数据库常见排序算法有哪些,数据结构中几种常见的排序算法之比较
来源:整理 编辑:黑码技术 2024-07-14 16:25:59
本文目录一览
1,数据结构中几种常见的排序算法之比较
1. 冒泡。 复杂度n平方。适用于数组2. 插入排序。复杂度n平方。适用于链表3. 快排。复杂度nLog(n)。4. 希尔排序。这是一种插入排序,但是从统计角度看,比插入排序要快。
2,数据结构中排序方法有多少种
1、插入排序(直接插入排序和希尔排序)2、选择排序(直接选择排序和堆排序)3、交换排序(冒泡排序和快速排序)4、归并排序5、基数排序直接插入排序:逐个将后一个数加到前面的排好的序中。在直接插入排序过程中,对其中一个记录的插入排序称为一次排序;直接插入排序是从第二个记录开始进行的,因此,长度为n的记录序列需要进行n-1次排序才能完成整个序列的排序。时间复杂度为O(n2)。希尔排序:希尔排序又称缩小增量排序,增量di可以有各种不同的取法,但最后一次排序时的增量必须为1,最简单可取di+1=di/2(取小)。时间复杂度为O(n(log2n)2)。直接选择排序说明:每次将后面的最小的找出来插入前面的已排好的序中。同理,具有n个记录的序列要做n-1次排序。时间复杂度为O(n2)。冒泡排序:两个两个比较,将大的往后移。通过第一次冒泡排序,使得待排序的n个记录中关键字最大的记录排到了序列的最后一个位置上。然后对序列中前n-1个记录进行第二次冒泡排序。。。对于n个记录的序列,共需进行n次冒泡排序。时间复杂度为O(n2)。快速排序:又叫分区交换排序,是对冒泡排序方法的一种改进。时间复杂度为O(nlog2n)。归并排序:将两个或两个以上的有序数据序列合并成一个有序数据序列的过程。时间复杂度为O(nlog2n)。这个网站数据结构很全 http://student.zjzk.cn/course_ware/data_structure/web/paixu/paixu8.1.1.1.htm 先讲讲吧; 稳定的概念: 在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。 只要有一种数据能使排序相对次序发生变化,就是不稳定的。 稳定排序: 直接插入排序;冒泡排序;归并排序……; 不稳定: 希尔排序,快排,直接选择排序.堆排…… 排序demo http://www.rayfile.com/files/6735a6d1-6635-11de-8acf-0014221b798a
3,常用的数据排序算法有哪些各有什么特点举例结合一种排序算法并
排序简介 排序是数据处理中经常使用的一种重要运算,在计算机及其应用系统中,花费在排序上的时间在系统运行时间中占有很大比重;并且排序本身对推动算法分析的发展也起很大作用。目前已有上百种排序方法,但尚未有一个最理想的尽如人意的方法,本章介绍常用的如下排序方法,并对它们进行分析和比较。1、插入排序(直接插入排序、折半插入排序、希尔排序);2、交换排序(起泡排序、快速排序);3、选择排序(直接选择排序、堆排序);4、归并排序;5、基数排序;学习重点 1、掌握排序的基本概念和各种排序方法的特点,并能加以灵活应用;2、掌握插入排序(直接插入排序、折半插入排序、希尔排序)、交换排序(起泡排序、快速排序)、选择排序(直接选择排序、堆排序)、二路归并排序的方法及其性能分析方法;3、了解基数排序方法及其性能分析方法。排序(sort)或分类 所谓排序,就是要整理文件中的记录,使之按关键字递增(或递减)次序排列起来。其确切定义如下: 输入:n个记录R1,R2,…,Rn,其相应的关键字分别为K1,K2,…,Kn。 输出:Ril,Ri2,…,Rin,使得Ki1≤Ki2≤…≤Kin。(或Ki1≥Ki2≥…≥Kin)。1.被排序对象--文件 被排序的对象--文件由一组记录组成。 记录则由若干个数据项(或域)组成。其中有一项可用来标识一个记录,称为关键字项。该数据项的值称为关键字(Key)。 注意: 在不易产生混淆时,将关键字项简称为关键字。2.排序运算的依据--关键字 用来作排序运算依据的关键字,可以是数字类型,也可以是字符类型。 关键字的选取应根据问题的要求而定。【例】在高考成绩统计中将每个考生作为一个记录。每条记录包含准考证号、姓名、各科的分数和总分数等项内容。若要惟一地标识一个考生的记录,则必须用"准考证号"作为关键字。若要按照考生的总分数排名次,则需用"总分数"作为关键字。排序的稳定性 当待排序记录的关键字均不相同时,排序结果是惟一的,否则排序结果不唯一。 在待排序的文件中,若存在多个关键字相同的记录,经过排序后这些具有相同关键字的记录之间的相对次序保持不变,该排序方法是稳定的;若具有相同关键字的记录之间的相对次序发生变化,则称这种排序方法是不稳定的。 注意: 排序算法的稳定性是针对所有输入实例而言的。即在所有可能的输入实例中,只要有一个实例使得算法不满足稳定性要求,则该排序算法就是不稳定的。排序方法的分类1.按是否涉及数据的内、外存交换分 在排序过程中,若整个文件都是放在内存中处理,排序时不涉及数据的内、外存交换,则称之为内部排序(简称内排序);反之,若排序过程中要进行数据的内、外存交换,则称之为外部排序。 注意: ① 内排序适用于记录个数不很多的小文件 ② 外排序则适用于记录个数太多,不能一次将其全部记录放人内存的大文件。2.按策略划分内部排序方法 可以分为五类:插入排序、选择排序、交换排序、归并排序和分配排序。排序算法分析1.排序算法的基本操作 大多数排序算法都有两个基本的操作: (1) 比较两个关键字的大小; (2) 改变指向记录的指针或移动记录本身。 注意: 第(2)种基本操作的实现依赖于待排序记录的存储方式。2.待排文件的常用存储方式(1) 以顺序表(或直接用向量)作为存储结构 排序过程:对记录本身进行物理重排(即通过关键字之间的比较判定,将记录移到合适的位置)(2) 以链表作为存储结构 排序过程:无须移动记录,仅需修改指针。通常将这类排序称为链表(或链式)排序;(3) 用顺序的方式存储待排序的记录,但同时建立一个辅助表(如包括关键字和指向记录位置的指针组成的索引表) 排序过程:只需对辅助表的表目进行物理重排(即只移动辅助表的表目,而不移动记录本身)。适用于难于在链表上实现,仍需避免排序过程中移动记录的排序方法。3.排序算法性能评价(1) 评价排序算法好坏的标准 评价排序算法好坏的标准主要有两条: ① 执行时间和所需的辅助空间 ② 算法本身的复杂程度(2) 排序算法的空间复杂度 若排序算法所需的辅助空间并不依赖于问题的规模n,即辅助空间是O(1),则称之为就地排序(In-PlaceSou)。 非就地排序一般要求的辅助空间为O(n)。(3) 排序算法的时间开销 大多数排序算法的时间开销主要是关键字之间的比较和记录的移动。有的排序算法其执行时间不仅依赖于问题的规模,还取决于输入实例中数据的状态。文件的顺序存储结构表示 #define n l00 //假设的文件长度,即待排序的记录数目 typedef int KeyType; //假设的关键字类型 typedef struct KeyType key; //关键字项 InfoType otherinfo;//其它数据项,类型InfoType依赖于具体应用而定义 }RecType; typedef RecType SeqList[n+1];//SeqList为顺序表类型,表中第0个单元一般用作哨兵 注意: 若关键字类型没有比较算符,则可事先定义宏或函数来表示比较运算。【例】关键字为字符串时,可定义宏"#define LT(a,b)(Stromp((a),(b))<0)"。那么算法中"a<"更为方便。 按平均时间将排序分为四类: (1)平方阶(O(n2))排序 一般称为简单排序,例如直接插入、直接选择和冒泡排序; (2)线性对数阶(O(nlgn))排序 如快速、堆和归并排序; (3)O(n1+£)阶排序 £是介于0和1之间的常数,即0<£<1,如希尔排序; (4)线性阶(O(n))排序 如桶、箱和基数排序。 各种排序方法比较 简单排序中直接插入最好,快速排序最快,当文件为正序时,直接插入和冒泡均最佳。 影响排序效果的因素 因为不同的排序方法适应不同的应用环境和要求,所以选择合适的排序方法应综合考虑下列因素: ①待排序的记录数目n; ②记录的大小(规模); ③关键字的结构及其初始状态; ④对稳定性的要求; ⑤语言工具的条件; ⑥存储结构; ⑦时间和辅助空间复杂度等。 不同条件下,排序方法的选择 (1)若n较小(如n≤50),可采用直接插入或直接选择排序。 当记录规模较小时,直接插入排序较好;否则因为直接选择移动的记录数少于直接插人,应选直接选择排序为宜。 (2)若文件初始状态基本有序(指正序),则应选用直接插人、冒泡或随机的快速排序为宜; (3)若n较大,则应采用时间复杂度为O(nlgn)的排序方法:快速排序、堆排序或归并排序。 快速排序是目前基于比较的内部排序中被认为是最好的方法,当待排序的关键字是随机分布时,快速排序的平均时间最短; 堆排序所需的辅助空间少于快速排序,并且不会出现快速排序可能出现的最坏情况。这两种排序都是不稳定的。 若要求排序稳定,则可选用归并排序。但本章介绍的从单个记录起进行两两归并的 排序算法并不值得提倡,通常可以将它和直接插入排序结合在一起使用。先利用直接插入排序求得较长的有序子文件,然后再两两归并之。因为直接插入排序是稳定的,所以改进后的归并排序仍是稳定的。 4)在基于比较的排序方法中,每次比较两个关键字的大小之后,仅仅出现两种可能的转移,因此可以用一棵二叉树来描述比较判定过程。 当文件的n个关键字随机分布时,任何借助于"比较"的排序算法,至少需要O(nlgn)的时间。 箱排序和基数排序只需一步就会引起m种可能的转移,即把一个记录装入m个箱子之一,因此在一般情况下,箱排序和基数排序可能在O(n)时间内完成对n个记录的排序。但是,箱排序和基数排序只适用于像字符串和整数这类有明显结构特征的关键字,而当关键字的取值范围属于某个无穷集合(例如实数型关键字)时,无法使用箱排序和基数排序,这时只有借助于"比较"的方法来排序。 若n很大,记录的关键字位数较少且可以分解时,采用基数排序较好。虽然桶排序对关键字的结构无要求,但它也只有在关键字是随机分布时才能使平均时间达到线性阶,否则为平方阶。同时要注意,箱、桶、基数这三种分配排序均假定了关键字若为数字时,则其值均是非负的,否则将其映射到箱(桶)号时,又要增加相应的时间。 (5)有的语言(如Fortran,Cobol或Basic等)没有提供指针及递归,导致实现归并、快速(它们用递归实现较简单)和基数(使用了指针)等排序算法变得复杂。此时可考虑用其它排序。 (6)本章给出的排序算法,输人数据均是存储在一个向量中。当记录的规模较大时,为避免耗费大量的时间去移动记录,可以用链表作为存储结构。譬如插入排序、归并排序、基数排序都易于在链表上实现,使之减少记录的移动次数。但有的排序方法,如快速排序和堆排序,在链表上却难于实现,在这种情况下,可以提取关键字建立索引表,然后对索引表进行排序。然而更为简单的方法是:引人一个整型向量t作为辅助表,排序前令t[i]=i(0≤i R[t[0]].key≤R[t[1]].key≤…≤R[t[n-1]].key 若要求最终结果是: R[0].key≤R[1].key≤…≤R[n-1].key 则可以在排序结束后,再按辅助表所规定的次序重排各记录,完成这种重排的时间是O(n)。栈stack 堆heap 队列 哈希表 红黑算法 二叉树 跟数学有关,原谅我数学不好哈
文章TAG:
数据 数据库 常见 排序 数据库常见排序算法有哪些