数据库采用的算法有哪些,哪些分类算法适用于大样本数据库
来源:整理 编辑:黑码技术 2024-05-17 16:38:41
本文目录一览
1,哪些分类算法适用于大样本数据库
public MappingMongoConverter mongoConverter() throws UnknownHostException MappingMongoConverter converter = new MappingMongoConverter(mongoDbFactory(), mongoMappingContext()); converter.setTypeMapper(mongoTypeMapper()); return converter; }饿,lru 最近最久未使用算法当前页面内容:页面一 2 2 2 1 1 1 4页面二 3 3 3 5 5 5页面三 2 2 2 2 2页面访问顺序 2 3 2 1 5 2 4 ............. 缺 缺 缺 缺 缺 不缺 缺 注意这步 和下面那步 这只是个算法,和数据库之类的没关系 我晕 ,几行内容咋对不上,我编辑时是正常的
2,信息检索中有哪些常用算法
http://bbs.qzgb.com/simple/index.php?t110102.html1.布尔逻辑检索利用布尔逻辑算符进行检索词或代码的逻辑组配,是现代信息检索系统中最常用的一种技术。常用的布尔逻辑算符有三种,分别是逻辑或“or”、逻辑与“and”、逻辑非“not”。2.截词检索截词检索是计算机检索系统中应用非常普遍的一种技术。由于西文的构词特性,在检索中经常会遇到名词的单复数形式不一致;同一个意思的词,英美拼法不一致;词干加上不同性质的前缀和后缀就可以派生出许多意义相近的词等等。这是就要用到截词检索3.位置检索位置检索也叫全文检索、邻近检索。所谓全文检索,就是利用记录中的自然语言进行检索,词与词之间的逻辑关系用位置算符组配,对检索词之间的相对位置进行限制。这是一种可以不依赖主题词表而直接使用自由词进行检索的技术方法。4.字段限定检索字段限定检索是指限定检索词在数据库记录中的一个或几个字段范围内查找的一种检索方法。在检索系统中,数据库设置的可供检索的字段通常有两种:表达文献主题内容特征的基本字段和表达文献外部特征的辅助字段。5.加权检索加权检索是某些检索系统中提供的一种定量检索技术。加权检索同布尔检索、截词检索等一样,也是文献检索的一个基本检索手段,但与它们不同的是,加权检索的侧重点不在于判定检索词或字符串是不是在数据库中存在、与别的检索词或字符串是什么关系,而是在于判定检索词或字符串在满足检索逻辑后对文献命中与否的影响程度。6.聚类检索聚类是把没有分类的事物,在不知道应分几类的情况下,根据事物彼此不同的内在属性,将属性相似的信息划分到同一类下面。
3,多媒体数据库中的常用的查询与检索方法是什么
由特征分析子系统、特征提取子系统、数据库、查询接口、检索引擎和索引过滤等子系统组成,同时需要相应的知识辅助支持特定领域的内容处理。(1)特征分析:该子系统负责将需要入库的媒体进行分割或节段化,标识出需要的对象或内容关键点,以便有针对性的对目标进行特征提取。特征标识可通过用户输入或系统定义。(2)特征提取对用户提供或系统标明的媒体对象进行特征提取处理。提取特征时需要知识处理模块的辅助,与标准化的知识定义直接有关。(3)数据库包含多媒体数据库和特征数据库,分别存放多媒体数据同对应的特征数据,它们彼此之间存在着一定的对应关系。特征库中包含了由用户输入的和预处理自动提取的特征数据,通过检索引擎组织与媒体类型相匹配的索引来达到快速搜索的目的。(4)查询接口,即人机交互界面,友好的人机交互界面是检索系统不可缺少的。在基于内容的检索中,由于特征不直观,因此必须为用户提供一个可视化的输入手段,还应在用户界面提供查询结果的创览功能,即为用户提供初步查询结果的返回,系统会根据用户选择的排序标准(如颜色、旋律、节拍等),按照相似度的大小将结果排列后,返回给用户。(5)检索引擎,检索要将特征提取值和特征库中的值进行比较,得到一个相似度。不同的媒体各自具有不同的相似度算法,这些算法也称为相似性测度函数。检索引擎使用相似性测度函数集去进行比较,从而确定与特征库的值最接近的多媒体数据。(6)索引过滤在大规模多媒体数据检索过程中,为了提高检索效率,常在检索引擎进行匹配之前采用索引过滤方法,取出高维特征用于匹配。这个软件是经过文件加密和远程文件同步限制的,也就是说里面的东西无法下载出来。但是你可以问你们老师拿账号自己去下载软件登陆使用。如果非要下载的话我建议你去新东方的教学官网,那里有公开的课堂视频资源可以下载多媒体数据模型 多媒体数据模型主要采用关系数据模型的扩充和采用面向对象的设计方法。由于用传统的关系模型难以描述多媒体信息和定义对多媒体数据对象的操作,目前在关系模型扩充方面除了引入抽象数据类型外,较多的采用语义模型的方法。关系模型主要描述数据的结构,而语义模型则主要表达数据的语义,语义模型的层次高于关系模型,后者可以作为前者的基础。目前的研究表明,采用面向对象的方法来描述和建立多媒体数据模型是较好的方法,面向对象的主要概念包括对象、类、方法、消息、封装和继承等,可以方便地描述复杂的多媒体信息。 b 数据的压缩和解压缩 由于多媒体数据,如声音、图像及视频等数据量大,存贮和传输需要很大的空间和时间,因此必须考虑对数据进行压缩编码,压缩方法要考虑到复杂性,实现速度及压缩质量等问题。 c 多媒体数据的存贮管理和存取方法 目前常用的有分页管理、B+树 和Hash方法等。在多媒体数据库中还要引入基于内容的检索方法、矢量空间模型信息索引检索技术、超位检索技术及智能索引技术等。 d 多媒体信息的再现及良好的用户界面 在多媒体数据库中应提供多媒体宿主语言调用,还应提供对声音、图像、图形和动态视频的各种编辑和变换功能。 e 分布式技术 多媒体数据通信对网络带宽有较高的要求,需要相应的高速网络,此外还要解决数据集成、异构多媒体数据语言查询、调度和共享等问题。给我分吧,再不详细加我
4,用于数据挖掘的分类算法有哪些各有何优劣
1. C4.5C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法.2. The k-means algorithm 即K-Means算法k-means algorithm算法是一个聚类算法,把n的对象根据他们的属性分为k个分割,k < n。它与处理混合正态分布的最大期望算法很相似,因为他们都试图找到数据中自然聚类的中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均 方误差总和最小。3. Support vector machines支持向量机,英文为Support Vector Machine,简称SV机(论文中一般简称SVM)。它是一种监督式学习的方法,它广泛的应用于统计分类以及回归分析中。支持向量机将向量映射到一个更 高维的空间里,在这个空间里建立有一个最大间隔超平面。在分开数据的超平面的两边建有两个互相平行的超平面。分隔超平面使两个平行超平面的距离最大化4.The Apriori algorithmApriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。5.最大期望(EM)算法在统计计算中,最大期望(EM,Expectation–Maximization)算法是在概率(probabilistic)模型中寻找参数最大似然 估计的算法,其中概率模型依赖于无法观测的隐藏变量(Latent Variabl)。最大期望经常用在机器学习和计算机视觉的数据集聚(Data Clustering)领域。1. 朴素贝叶斯(naive bayes, nb)超级简单,就像做一些数数的工作。如果条件独立假设成立的话,nb将比鉴别模型(如logistic回归)收敛的更快,所以你只需要少量的训练数据。即使条件独立假设不成立,nb在实际中仍然表现出惊人的好。如果你想做类似半监督学习,或者是既要模型简单又要性能好,nb值得尝试。2. logistic回归(logistic regression, lr)lr有很多方法来对模型正则化。比起nb的条件独立性假设,lr不需要考虑样本是否是相关的。与决策树与支持向量机(svm)不同,nb有很好的概率解释,且很容易利用新的训练数据来更新模型(使用在线梯度下降法)。如果你想要一些概率信息(如,为了更容易的调整分类阈值,得到分类的不确定性,得到置信区间),或者希望将来有更多数据时能方便的更新改进模型,lr是值得使用的。3.决策树(decision tree, dt)dt容易理解与解释。dt是非参数的,所以你不需要担心野点(或离群点)和数据是否线性可分的问题(例如,dt可以轻松的处理这种情况:属于a类的样本的特征x取值往往非常小或者非常大,而属于b类的样本的特征x取值在中间范围)。dt的主要缺点是容易过拟合,这也正是随机森林(random forest, rf)(或者boosted树)等集成学习算法被提出来的原因。此外,rf在很多分类问题中经常表现得最好(我个人相信一般比svm稍好),且速度快可扩展,也不像svm那样需要调整大量的参数,所以最近rf是一个非常流行的算法。4.支持向量机(support vector machine, svm)很高的分类正确率,对过拟合有很好的理论保证,选取合适的核函数,面对特征线性不可分的问题也可以表现得很好。svm在维数通常很高的文本分类中非常的流行。由于较大的内存需求和繁琐的调参,我认为rf已经开始威胁其地位了。
5,数据挖掘算法的算法分类
C4.5就是一个决策树算法,它是决策树(决策树也就是做决策的节点间像一棵树一样的组织方式,其实是一个倒树)核心算法ID3的改进算法,所以基本上了解了一半决策树构造方法就能构造它。决策树构造方法其实就是每次选择一个好的特征以及分裂点作为当前节点的分类条件。C4.5比ID3改进的地方时:ID3选择属性用的是子树的信息增益(这里可以用很多方法来定义信息,ID3使用的是熵(entropy)(熵是一种不纯度度量准则)),也就是熵的变化值,而C4.5用的是信息增益率。也就是多了个率嘛。一般来说率就是用来取平衡用的,就像方差起的作用差不多,比如有两个跑步的人,一个起点是100m/s的人、其1s后为110m/s;另一个人起速是1m/s、其1s后为11m/s。如果仅算差值那么两个就是一样的了;但如果使用速度增加率(加速度)来衡量,2个人差距就很大了。在这里,其克服了用信息增益选择属性时偏向选择取值多的属性的不足。在树构造过程中进行剪枝,我在构造决策树的时候好讨厌那些挂着几个元素的节点。对于这种节点,干脆不考虑最好,不然很容易导致overfitting。对非离散数据都能处理,这个其实就是一个个式,看对于连续型的值在哪里分裂好。也就是把连续性的数据转化为离散的值进行处理。能够对不完整数据进行处理,这个重要也重要,其实也没那么重要,缺失数据采用一些方法补上去就是了。 (朴素贝叶斯NB)NB认为各个特征是独立的,谁也不关谁的事。所以一个样本(特征值的集合,比如“数据结构”出现2次,“文件”出现1次),可以通过对其所有出现特征在给定类别的概率相乘。比如“数据结构”出现在类1的概率为0.5,“文件”出现在类1的概率为0.3,则可认为其属于类1的概率为0.5*0.5*0.3。 (支持向量机SVM)SVM就是想找一个分类得最”好”的分类线/分类面(最近的一些两类样本到这个”线”的距离最远)。这个没具体实现过,上次听课,那位老师自称自己实现了SVM,敬佩其钻研精神。常用的工具包是LibSVM、SVMLight、MySVM。 (Mining frequent patterns without candidate generation)这个也不太清楚。FP-growth算法(Frequent Pattern-growth)使用了一种紧缩的数据结构来存储查找频繁项集所需要的全部信息。采用算法:将提供频繁项集的数据库压缩到一棵FP-tree来保留项集关联信息,然后将压缩后的数据库分成一组条件数据库(一种特殊类型的投影数据库),每个条件数据库关联一个频繁项集。 K-Means是一种最经典也是使用最广泛的聚类方法,时至今日扔然有很多基于其的改进模型提出。K-Means的思想很简单,对于一个聚类任务(你需要指明聚成几个类,当然按照自然想法来说不应该需要指明类数,这个问题也是当前聚类任务的一个值得研究的课题),首先随机选择K个簇中心,然后反复计算下面的过程直到所有簇中心不改变(簇集合不改变)为止:步骤1:对于每个对象,计算其与每个簇中心的相似度,把其归入与其最相似的那个簇中。步骤2:更新簇中心,新的簇中心通过计算所有属于该簇的对象的平均值得到。k-means 算法的工作过程说明如下:首先从n个数据对象任意选择k 个对象作为初始聚类中心;而对于所剩下其它对象,则根据它们与这些聚类中心的相似度(距离),分别将它们分配给与其最相似的(聚类中心所代表的)聚类;然后再计算每个所获新聚类的聚类中心(该聚类中所有对象的均值);不断重复这一过程直到标准测度函数开始收敛为止。一般都采用均方差作为标准测度函数. k个聚类具有以下特点:各聚类本身尽可能的紧凑,而各聚类之间尽可能的分开。 BIRCH也是一种聚类算法,其全称是Balanced Iterative Reducing and Clustering using Hierarchies。BIRCH也是只是看了理论没具体实现过。是一个综合的层次聚类特征(Clustering Feature, CF)和聚类特征树(CF Tree)两个概念,用于概括聚类描述。聚类特征树概括了聚类的有用信息,并且占用空间较元数据集合小得多,可以存放在内存中,从而可以提高算法在大型数据集合上的聚类速度及可伸缩性。BIRCH算法包括以下两个阶段:1)扫描数据库,建立动态的一棵存放在内存的CF Tree。如果内存不够,则增大阈值,在原树基础上构造一棵较小的树。2)对叶节点进一步利用一个全局性的聚类算法,改进聚类质量。由于CF Tree的叶节点代表的聚类可能不是自然的聚类结果,原因是给定的阈值限制了簇的大小,并且数据的输入顺序也会影响到聚类结果。因此需要对叶节点进一步利用一个全局性的聚类算法,改进聚类质量。 AdaBoost做分类的一般知道,它是一种boosting方法。这个不能说是一种算法,应该是一种方法,因为它可以建立在任何一种分类算法上,可以是决策树,NB,SVM等。Adaboost是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。其算法本身是通过改变数据分布来实现的,它根据每次训练集之中每个样本的分类是否正确,以及上次的总体分类的准确率,来确定每个样本的权值。将修改过权值的新数据集送给下层分类器进行训练,最后将每次训练得到的分类器最后融合起来,作为最后的决策分类器。使用adaboost分类器可以排除一些不必要的训练数据,并将关键放在关键的训练数据上面。 GSP,全称为Generalized Sequential Pattern(广义序贯模式),是一种序列挖掘算法。对于序列挖掘没有仔细看过,应该是基于关联规则的吧!网上是这样说的:GSP类似于Apriori算法,采用冗余候选模式的剪除策略和特殊的数据结构-----哈希树来实现候选模式的快速访存。GSP算法描述:1)扫描序列数据库,得到长度为1的序列模式L1,作为初始的种子集。2)根据长度为i 的种子集Li ,通过连接操作和修剪操作生成长度为i+1的候选序列模式Ci+1;然后扫描序列数据库,计算每个候选序列模式的支持度,产生长度为i+1的序列模式Li+1,并将Li+1作为新的种子集。3)重复第二步,直到没有新的序列模式或新的候选序列模式产生为止。产生候选序列模式主要分两步:连接阶段:如果去掉序列模式s1的第一个项目与去掉序列模式s2的最后一个项目所得到的序列相同,则可以将s1与s2进行连接,即将s2的最后一个项目添加到s1中。修切阶段:若某候选序列模式的某个子序列不是序列模式,则此候选序列模式不可能是序列模式,将它从候选序列模式中删除。候选序列模式的支持度计算:对于给定的候选序列模式集合C,扫描序列数据库,对于其中的每一条序列s,找出集合C中被s所包含的所有候选序列模式,并增加其支持度计数。 又是一个类似Apriori的序列挖掘。其中经典十大算法为:C4.5,K-Means,SVM,Apriori,EM,PageRank,AdaBoost,KNN,NB和CART。数据挖掘的核心是为数据建立模型的过程。所有的数据挖掘产品都有这个建模过程,不同的是它们构造模型的方式互不相同。进行数据挖掘时可采用许多不同的算法。 决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。常用的算法有chaid、cart、id3和c4.5。决策树方法很直观,这是它的最大优点,缺点是随着数据复杂性的提高,分支数增多,管理起来很困难。angoss公司的knowedgeseeker产品采用了混合算法的决策树。 神经网络近来越来越受到人们的关注,因为它为解决大复杂度问题提供了一种相对来说比较有效的简单方法。神经网络常用于两类问题:分类和回归。它的最大优点是它能精确地对复杂问题进行预测。神经网络的缺点是网络模型是个黑盒子,预测值难于理解;神经网络有过拟合的现象。ibm、sas、spss、hnc、angoss等公司是这个产品的供应者。 遗传算法是一种基于进化过程的组合优化方法。它的基本思想是随着时间的更替,只有最适合的物种才得以进化。遗传算法能够解决其它技术难以解决的问题,然而,它也是一种最难于理解和最开放的方法。遗传算法通常与神经网络结合使用。采用上述技术的某些专门的分析工具已经发展了大约十年的历史,不过这些工具所面对的数据量通常较小。而现在这些技术已经被直接集成到许多大型的工业标准的数据仓库和联机分析系统中去了。
文章TAG:
数据 数据库 采用 算法 数据库采用的算法有哪些