本文目录一览

1,数据与大数据专业学什么课程

大数据存储阶段:hbase、hive、sqoop。大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。大数据实时计算阶段:Mahout、Spark、storm。大数据数据采集阶段:Python、Scala。大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
1、学科知识:从数据分析涉及到的专业知识点上看,主要是这些:(1)统计学:参数检验、非参检验、回归分析等(2)数学:线性代数、微积分等(3)社会学:主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的,这里就不多说了(5)计算机:从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,你还能有足够的能力从数据库里提取你需要的数据(比如使用sql进行查询),这种提取数据分析原材料的能力是每个数据从业者必备的。此外,如果要想走的更远,还要能掌握一些编程能力,从而借住一些专业的数据分析工具,帮助你完成工作。……好好学习,虽然累,但是要坚持!2、软件相关:从事数据分析方面的工作必备的工具是什么(1)数据分析报告类:microsoft office软件等,如果连excel表格基本的处理操作都不会,连ppt报告都不会做,那我只好说离数据分析的岗位还差的很远。现在的数据呈现不再单单只是表格的形式,而是更多需要以可视化图表去展示你的数据结果,因此数据可视化软件就不能少,bdp个人版、echarts等这些必备的,就看你自己怎么选了。(2)专业数据分析软件:office并不是全部,要从在数据分析方面做的比较好,你必须会用(至少要了解)一些比较常用的专业数据分析软件工具,比如spss、sas、matlab等等,这些软件可以很好地帮助我们完成专业性的算法或模型分析,还有高级的python、r等。(3)数据库:hive、hadoop、impala等数据库相关的知识可以学习;(3)辅助工具:比如思维导图软件(如mindmanager、mindnode pro等)也可以很好地帮助我们整理分析思路。最重要的是:理论知识+软件工具+数据思维=数据分析基础,最后要把这些数据分析基础运用到实际的工作业务中,好好理解业务逻辑,真正用数据分析驱动网站运营、业务管理,真正发挥数据的价值。

数据与大数据专业学什么课程

2,大学里的计算机信息管理都学什么

这个专业主要是培养能从事计算机信息系统管理与开发的专门化技术人才。这个专业目前有三个方向:微软SQL SERVER方向、ORACLE方向和信息管理方向。 其中微软SQL SERVER方向的主要课程是:(1)SQL Server 2000 设计与应用 主要讲授数据库技术的基本概念,数据模型和关系数据库模型,关系数据库设计理论,SQLserver数据库设计,数据查询,高级SQL语言查询,存储过程,应用数据库设计。 (2)ADO.NET 程序设计 操纵数据库是编写应用程序的重要环节,单独开设一门课程讲解如何编写高效、安全、稳定的面向数据的应用程序。(3)基于.NET 的Web 应用程序设计 介绍设计基于.NET 的Web 应用程序的基本概念,方法和相关配置,是本专业重要的课程。 ORACLE方向的主要课程是:(1)ORACLE 数据库及应用 本课程主要介绍ORACLE数据的使用,其中包括SQL语言的基础基本数据定义、数据操作语句。学习使用ORACLE创建和管理数据库,实现数据完整性入索引、视图、存储过程和触发器的管理方法。 (2)XML实用软件技术 本课程主要介绍XML、UML等实用软件技术,使学生了解XML、UML技术,并运用于实际开发中。 (3)ORACLE语言程序设计 本课程主要介绍ORACLE语言基础、ORACLE语言编程和实践,使学生掌握较扎实的ORACLE语言基础为今后ORACLE应用打下较好的基础。 (4)SQL Server 2000 设计与应用 主要讲授数据库技术的基本概念,数据模型和关系数据库模型,关系数据库设计理论,SQLserver数据库设计,数据查询,高级SQL语言查询,存储过程,应用数据库设计。 信息管理方向的主要课程是:(1)数据库原理与应用 数据库系统的基本知识,关系数据库、关系模式的规范化、关系数据库标准语言、数据库开发的总体设计、关系数据库管理系统Aceess的应用等。 (2)管理信息系统 管理信息系统的基本概念、原理与系统开发中的各个环节,包括信息系统的规划、分析、设计、实施维护维护等过程中的技术与方法。 (3)SQL SERVER 2000数据库设计与应用 本课程主要介绍SQL server数据库的开发与管理,包括数据定义(DDL)、数据操作(DML)等SQL语句的使用。学习SQL server2000的基本概念及相关的管理和维护,以及T-SQL程序和触发器等的编写。 (4)ERP原理 本课程讲授ERP (Enterprise Resource Planning企业资源计划)的基本原理及在企业中的应用,典型ERP软件的操作使用方法。主要内容有基本MRP、闭环MRP、制造资源计划(MRP-II)、企业资源计划(Enterprise Resource Planning )ERP及多个典型案例分析及相关软件的操作使用方法。 当然分这些方向是为了让你在本科学习时更有侧重点,因为本科的学习实际上是方向很模糊的,什么课程都学习了,但是都不深入,所以我将这些方向分出来,这样你在学习时可以选择你最喜欢的侧重学习,也许对你规划自己将来要从事的方向有很大帮助呢。呵呵~

大学里的计算机信息管理都学什么

3,大数据专业主要学什么

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。以中国人民大学为例:基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
1、Java基础JAVA开发简介 基本语法、运算符 流程控制语句 数组 函数 面向对象 常用类库 异常 io系统 集合泛型 线程 网络编程 阶段测试2、JavaWebhtml+css; html5+css3; javascript; jquery; 数据库; JDBC; WEB服务器、开发工具-MyEclipse; HTTP协议; (数据库连接池)数据源; JavaWeb开发之Servlet、Servlet3.0; 请求与响应; JSP; MVC; 会话管理; 过滤和监听; 异步请求; 阶段测试3、JavaEE高级+Linux课程+分布式计算JavaWebJspring框架、mybatis框架、nio、JVM、maven框架、LINUX、MYSQL分库分表、读写分离、JAVA搜索引擎、Redis、消息队列、分布式计算框架、项目实战4、离线数据分析平台Hadoop初识Hadoop以及Hadoop生态系统、;Hadoop分布式文件系统HDFS、Hadoop的设计目标;分布式计算框架MapReduce;MapReduce应用程序的开发;数据仓库Hive的安装和使用、分桶作用、创建点击流数据数据仓库、点击流数据分析(HiveSql)5、实时数据分析平台Stormpython介绍、安装、基本操作、基本语法、数据结构、内建函数、异常、模块;Storm介绍、Storm应用场景及行业案例、Storm特点、Storm编程模型部署;Storm集群搭建、配置集群、通信机制;消息队列Kafka、使用Flume收集数据到Kafka、Mahout的离线计算数据、Kafka基础与常用API6、Scala语言与SparkScala;SparkStreaming、 SparkGraphX、Spark内核解析、Spark优化解析;Spark-Mllib机器学习、回归算法、决策树、推荐系统、分类算法等;升级Hive执行引擎为Spark、使用Spark Sql完成点击流日志业务需求、打通Spark数据收集、存储、计算、展示流程。
首先是基础阶段。这一阶段包括:关系型数据库原理、LINUX操作系统原理及应用。在掌握了这些基础知识后,会安排这些基础课程的进阶课程,即:数据结构与算法、MYSQL数据库应用及开发、SHELL脚本编程。在掌握了这些内容之后,大数据基础学习阶段才算是完成了。接下来是大数据专业学习的第二阶段:大数据理论及核心技术。第二阶段也被分为了基础和进阶两部分,先理解基础知识,再进一步对知识内容做深入的了解和实践。基础部分包括:布式存储技术原理与应用、分布式计算技术、HADOOP集群搭建、运维;进阶内容包括:HDFS高可靠、ZOOKEEPER、CDH、Shuffle、HADOOP源码分析、HIVE、HBASE、Mongodb、HADOOP项目实战。完成了这部分内容的学习,学员们就已经掌握了大数据专业大部分的知识,并具有了一定的项目经验。但为了学员们在大数据专业有更好的发展,所学知识能更广泛地应用到大数据相关的各个岗位,有个更长远的发展前景。第三阶段叫做数据分析挖掘及海量数据高级处理技术。基础部分有:PYTHON语言、机器学习算法、FLUME+KAFKA;进阶部分有:机器学习算法库应用、实时分析计算框架、SPARK技术、PYTHON高级语言应用、分布式爬虫与反爬虫技术、实时分析项目实战、机器学习算法项目实战。以上便是大数据的主要学习内容。相信在掌握了以上大数据专业知识后,中公优就业的学员们一定能够在将来的工作中得心应手,完成自己的职业理想。

大数据专业主要学什么


文章TAG:大学数据库课程有哪些  数据与大数据专业学什么课程  
下一篇