1,数据挖掘的应用领域有哪些

数据挖掘的应用领域:1、科学研究2、商业应用(1)市场营销(2)金融投资(3)欺诈甄别3、Web挖掘

数据挖掘的应用领域有哪些

2,论述医学数据挖掘涉及到哪些学科的知识

任务占坑
当然是要以医学的领域知识为主,同时掌握数据挖掘的工具,包括基本的数据挖掘知识,最好还有统计和机器学习的一些常用工具

论述医学数据挖掘涉及到哪些学科的知识

3,数据挖掘可以解决医疗中的什么问题

您好,我也是医疗工作者,我之前是通过采集数据和数据挖掘,解决了不少关于医疗方面的问题,可以跟你分享一下我的经验。首先采集完数据后可以进行基因序列数据对比、通过机器深度学习癌变细胞样本、健康风险预测、营养数据解析、智能化代谢管理、发现新的药物靶点和替代性药物等等,还有很多分析的重点我就不一一列举了。我本身是不懂这些的,后来是跟一个叫前嗅的公司合作,他是那种采集分析一体的公司。很快他就给了我分析报告,上面说的这些分析的方面都是他提供的,分析的非常全面,把这些数据都变成了对我很有价值的信息,而且价格公道,所以我之后也是一直跟他们合作。你也可以咨询一下,应该也可以帮你解决很多问题。

数据挖掘可以解决医疗中的什么问题

4,数据库技术的四个方向

规模会向两头发展—大的越来越大,小的越来越小。所谓大的,指的是企业级数据库的规模。前10年,数据库存储的数据大都以GB为基准衡量,几十GB就已经非常庞大。而如今,只广东移动每个月新增的数据量,就已经以TB衡量,不出3年,很多企业要存储的数据就要达到PB级。数据量越来越大,需要更大的数据库做支撑,这就是数据库的发展方向之一。另一方面,数据库也会越来越小。如今,Sybase的数据库已经安装在高档的Casio手表中了,这些手表中记录的有天气情况、气压、佩带者的血压、心跳等数据。这种数据库并不要求数据存储量大,但是要求在低计算量的情况下反应快,而且能够适应外界环境的变化。存储方式从行到列的改变。以前数据库都是以行的形式存储的,理由很简单,用户需要的是对单条数据的读取和存储。而如今,单纯的数据记录已经不足以支撑企业发展了,企业更需要的是数据分析和决策支持。那么,单纯看一条记录没有任何意义,而是要把所有数据的某一项都统计出来进行分析,这就是列的概念。以中国移动为例,上亿个用户,每个月上TB的数据,哪些是ⅥP用户,该如何根据他们的需求提供专有服务,对于那些动感地带的用户,到底应该制定哪些优惠政策,除了看话费,是不是还能挖掘出他们的消费特点,进行更有针对性的业务推广活动?这些,就不是看一条数据的问题,而需要频繁对列进行操作。预计,不出半年,各大数据库厂商都会推出以列为存储方式的数据库。非结构化数据仍然不能纳入数据库中。说到这里,可能大家都认为我在逆潮流而动,如今很多数据库厂商都可以接受图像、视频等非结构化数据了,Sybase怎么还要死守着结构化数据呢?其实我认为,非结构化数据要想进入数据库,仍然需要结构化,只是这种结构化的方法各厂商不一样,而且相比以前有了很大的进步和提高。以前我们图片的记录方式是记录它的文件名,如果文件名中提到了某个人的名字,那么在整个数据库查询的时候,就可以把这个图片找到。而这是非常不科学的,因为很多非结构化数据的文件名起的并不可能完全。那么,如今大家把非结构化的数据变得结构化,其实就是在用结构化的数据描述这张图片,比如用点和位置来记录这张图片的每个像素。而一旦需要做查询的时候,可以根据像素的组合记录来比对,把符合比对要求的数据全部筛选出来。这样就把非结构化数据以结构化的方式纳入数据库中了,并能接受查询、检索等操作。数据库和数据仓库会分开。很多数据库厂商认为,数据库一个就行,一专多能,既能用它进行实时交易,也能用它来进行数据分析。但是,其实很多用户如今在前台需要数据库提供实时交易功能,需要有很快的响应速度,而在后台,则需要设立一些规则进行数据分析和商务智能分析。Sybase就认为,这两个数据库应该是两种格式,毕竟它们的功能不一样。因此,从产品设置上,Sybase有交易型数据库和分析型数据库两种。

5,医疗大数据的分析和挖掘发展现状如何未来会有什么样的应用前景

大数据结合医疗行业发展前景非常乐观,据前瞻产业研究院《2016-2021年中国大数据产业发展前景与投资战略规划分析报告》显示,医院和医疗行业面临的大数据主要有医学影像、视频(教学、监控)及文献等非结构化数据。由于这些数据增长很快且结构复杂,给数据管理和利用带来较大的压力,存储与管理成本不断提高,数据利用困难、利用率低。除了数据数量和形态的迅速增加,医疗数据还需要越来越长的保留期。一旦存储系统的安全性出现问题,导致医疗数据丢失,医院会面临严重不良局面。医疗大数据的应用要保证数据的全面性、准确性、实时性和使用的便捷性,要能快速运算和快速展现,要与日常工作平台紧密结合。  前瞻产业研究院认为,面对“大数据”的挑战,医院必须考虑三大主要问题。  (1) 数据存储是否安全可靠?因为系统一旦出现故障,首先考验的就是数据的存储、灾备和恢复能力。如果数据不能迅速恢复,而且恢复不能到断点,则将对医院的业务、患者满意度构成直接损害。  (2) 如何提高医院运行和服务的效率?提高效率就是节省医生的时间,从而缓解医疗资源的紧张状况,在一定程度上可以帮助解决“看病难”的问题。  (3) 如何控制大数据的成本?存储架构是否合理,不仅影响医院IT系统的成本,而且关乎医院的运营成本,医疗数据激增,使医院普遍存在着较大的存储扩容压力。如今,医院的存储设备大多是由不同厂商构成的完全异构的存储系统。这些不同的存储设备利用各自不同的软件工具来进行控制和管理,这样就增加了整个系统的复杂性,使管理成本非常高。
如今是大数据时代,前景自然好了,据前瞻产业研究院《2016-2021年中国行业大数据市场发展前景预测与投资战略规划分析报告》显示,总的来说,医疗大数据应用主要体现在临床操作、研发、新的商业模式、付款/定价、公众健康五大领域,在这些场景中,大数据的分析和应用都将发挥巨大的作用。  医疗大数据的应用对于临床医学研究、科学管理和医疗服务模式转型发展都具有重要意义,而大数据技术的运用前景是十分光明的。  医院和医疗行业面临的大数据主要有医学影像、视频(教学、监控)及文献等非结构化数据。由于这些数据增长很快且结构复杂,给数据管理和利用带来较大的压力,存储与管理成本不断提高,数据利用困难、利用率低。除了数据数量和形态的迅速增加,医疗数据还需要越来越长的保留期。一旦存储系统的安全性出现问题,导致医疗数据丢失,医院会面临严重不良局面。医疗大数据的应用要保证数据的全面性、准确性、实时性和使用的便捷性,要能快速运算和快速展现,要与日常工作平台紧密结合。  国人已经把健康大数据上升为国家战略,而面对“大数据”的挑战,医院必须考虑三大主要问题。  (1) 数据存储是否安全可靠?因为系统一旦出现故障,首先考验的就是数据的存储、灾备和恢复能力。如果数据不能迅速恢复,而且恢复不能到断点,则将对医院的业务、患者满意度构成直接损害。  (2) 如何提高医院运行和服务的效率?提高效率就是节省医生的时间,从而缓解医疗资源的紧张状况,在一定程度上可以帮助解决“看病难”的问题。  (3) 如何控制大数据的成本?存储架构是否合理,不仅影响医院it系统的成本,而且关乎医院的运营成本,医疗数据激增,使医院普遍存在着较大的存储扩容压力。如今,医院的存储设备大多是由不同厂商构成的完全异构的存储系统。这些不同的存储设备利用各自不同的软件工具来进行控制和管理,这样就增加了整个系统的复杂性,使管理成本非常高。  未来,大数据必将影响医疗行业,未来医疗行业的大数据将会具体应用在:临床辅助决策,医疗质量监管,疾病预测模型,临床实验分析。其发展空间有:个人健康门户,慢病管理和健康管理,电子病历和临床质量监控,医学知识管理,临床路径和循证医学,远程医疗和移动医疗,医学研究数据仓库和共享平台,跨医疗机构协作平台。

文章TAG:临床数据库挖掘有哪些方向  数据挖掘的应用领域有哪些  
下一篇