1,开发中数据库设计原则

空间和时间折衷,不要一味追求范式等级,以用途(増删改查频度)决定范式等级

开发中数据库设计原则

2,Sqlserver数据库设计原则

由于字数太多,只能分开来写了,望见谅! 如果希望设计出比较好的数据库,有一些专门的规则,称为数据库的设计范式。遵循这些规则,你将设计出良好的数据库。下面将逐一对其进行说明: 1.第一范式:它的目标是确保每一列的原子性,如果每列(或属性)都是不可再分的最小数据单元,则满足第一范式。 2.第二范式:第二范式则是在第一范式的基础上,更近一层,目标是确保表中的每一列都和主键相关。如果一个关系满足第一范式,并且除了主键意外的其他列,都依赖与该主键,则满足第二范式。例如:订单表(订单编号,产品编号,订购日期,价格,。。。);该表主要用来表述订单,所以将订单设为主键,而“订购日期”,“价格”这两列与“订单编号”主键相关。但是“产品编号”并不依赖于“订单编号”,该列应当删除,放入产品表中。这样,该表就之描述一件事情:订单信息了。
1、确定b表结构支持a的数据 2、使用sql server 数据段导入功能 请参考 http://www.itmop.com/network/sql/mssql/0717454.html

Sqlserver数据库设计原则

3,请大伙给我解释一下数据库设计的基本原则

设计数据库不应该有这些: 1数据冗余 2不一致性 3插入异常 4删除异常 这图就出现了问题 如人工智能的学分不一致 有两个文化学 这就出现了以上的问题 所以要杜绝 我们可以这样分为两个表 如下: 右边的表只要把人工智能的删除一个就好了(画错了 不好意思) 在就是函数的一些关系 如函数依赖 : v函数依赖设R(U)是一个属性集U上的关系,X和Y是U的子集。如果属性集合X中每个属性的值构成的集合唯一地决定了属性集合Y中每个属性的值构成的集合,则属性集合Y函数依赖于属性集合X,计为:X→Y 如下表所示,知道了“课程名”的值,即可知道“授课学时”的值。称“授课学时”函数依赖于“课程名”,或“课程名”可以决定“授课学时”,记作课程名→授课学时。 还有这个 v部分函数依赖:如果非主属性B函数依赖于构成某个候选关键字的一组主属性A的某一个真子集,则称B部分函数依赖于A。 v如“学分”函数依赖于主关键字 传递关系 : v传递函数依赖的关系:在R (U)中,如存在X,Y,Z包含于U,且满足:X—>Y,Y—>Z,则称Z传递函数依赖于X。v学生住宿的楼号依赖于学号,学生应交的住宿费是由楼号决定的,即“收费”依赖于“楼号”,“楼号”依赖于“学号”,则“收费”传递函数依赖于“学号”。 接下来的就是要符合范式: 第一范式: 任何符合关系定义的表即满足第一范式。 ID Name Sex Age Male Female 101 张三 Y   20 102 李四   Y 21 v第二范式?定义:如果一个关系不存在部分依赖关系,那么该关系就属于第二范式。?凡是以单个属性作为主关键字的关系自动就是第二范式。因为主关键字只有一个,不会存在部分依赖的情况。因此,第二范式只是针对主关键字是组合属性的关系。 第三范式v定义:一个关系如果是第二范式的,并且没有传递依赖关系,则该关系就是第三范式。v每个非主属性不部分依赖于关键字,也不传递依赖于关键字的关系。 关系规范化的目的:解决关系模式中存在的插入、删除异常,以及数据冗余问题,基本思想:围绕函数依赖的主线,对一个关系模式进行分解,使关系从较低级范式变换到较高级范式。 以上也就是设计数据库基本注意的问题 我也是初学者 只能帮忙这些不知道是否对你有用!
如果完全按照3个范式,不但对数据库服务器是一个考验,对统计数据也是一种考验哈 当你的数据是千万级的时候就会知道其实是个噩梦
这个很抽象!
数据库设计的三范式所谓范式,是关系型数据库关系模式规范化的标准,从规范化的宽松到严格,分别为不同的范式,通常使用的有第一范式、第二范式、第三范式及BC范式等。范式是建立在函数依赖基础上的。函数依赖定义:设有关系模式R(U),X和Y是属性集U的子集,函数依赖是形为X→Y的一个命题,对任意R中两个元组t和s,都有t[X]=s[X]蕴涵t[Y]=s[Y],那么FD X→Y在关系模式R(U)中成立。X→Y读作X函数决定Y,或Y函数依赖于X。通俗的讲,如果一个表中某一个字段Y的值是由另外一个字段或一组字段X的值来确定的,就称为Y函数依赖于X。函数依赖应该是通过理解数据项和企业的规则来决定的,根据表的内容得出的函数依赖可能是不正确的。第一范式(1NF)定义:如果关系模式R的每个关系r的属性都是不可分的数据项,那么就称R是第一范式的模式。  简单的说,每一个属性都是原子项,不可分割。1NF是关系模式应具备的最起码的条件,如果数据库设计不能满足第一范式,就不称为关系型数据库。关系数据库设计研究的关系规范化是在1NF之上进行的。第二范式(2NF)定义:如果关系模式R是1NF,且每个非主属性完全函数依赖于候选键,那么就称R是第二范式。简单的说,第二范式要满足以下的条件:首先要满足第一范式,其次每个非主属性要完全函数依赖与候选键,或者是主键。也就是说,每个非主属性是由整个主键函数决定的,而不能由主键的一部分来决定。举个例子:  有股票日行情表的主键是股 票代码和交易日期组成。非主属性中有收盘价和成交量等,都是由主键,即股票代码和交易日期函数决定的,单独的股票代码或者交易日期都不能函数决定这些非主 属性。如果这个表中有非主属性股票简称,则股票简称是可以由股票代码来函数决定的,这样股票简称这个非主属性就不是完全函数依赖于候选键,这样的设计就不 满足第二范式。第三范式(3NF)定义:如果关系模式R是2NF,且关系模式R(U,F)中的所有非主属性对任何候选关键字都不存在传递依赖,则称关系R是属于第三范式。简单的说,第三范式要满足以下的条件:首先要满足第二范式,其次非主属性之间不存在函数依赖。由于满足了第二范式,表示每个非主属性都函数依赖于主键。如果非主属性之间存在了函数依赖,就会存在传递依赖,这样就不满足第三范式。举 个例子:在股票基本情况表中,主键是股票代码,有非主属性所属一级行业和所属二级行业。根据业务规则,所属二级行业能够函数决定所属一级行业,这就表示存 在这样一种关系:股票代码函数决定所属二级行业,所属二级行业函数决定所属一级行业,这就形成了传递依赖,这样的设计就不符合第三范式。不过在实际运用 中,为查询和使用的方便,有时也会违反第三范式。如上例,如果没有所属一级行业的属性,需要查询所属一级行业的相关股票,需要查询时使用函数来从二级行业 中函数生成所属一级行业,使用性能上会受影响。所以通常会加上所属一级行业的属性。BC范式(BCNF) BC范式是第三范式的增强版,不过也有人说是直接从1NF发展过来的,即每个属性,包括主属性或非主属性,都完全依赖于候选键,并且不存在传递依赖情况。

请大伙给我解释一下数据库设计的基本原则

4,数据库设计

我不要你的分,给你一点建议: 真正想掌握数据库,一定要自己学会分析。根据需求自己分析出数据结构,各个表之间的关系,数据怎么表示,那样才能真正学会。每个人的习惯不同,他设计出来觉得这个样子已经可以满足需要了,但你没有真正理解它的核心思想,依然不能控制数据逻辑。那有什么用呢? 如果仅仅是为了拿到毕业证,那很容易。
说起数据库设计,相信大家都明白怎么回事,但说起数据库设计的重要性,我想大家也只是停留在概念上而已,到底如何重要?怎么重要呢?今天就将我至今为止的理解向大家阐述下。一个不良的数据库设计,必然会造成很多问题,轻则增减字段,重则系统无法运行。我先来说说数据库设计不合理的表现吧:1. 与需求不符因为这个原因造成的改动量往往是最大。如果进入编码阶段的话,很可能会直接让你崩溃掉。2. 性能低下含有大数据量的表之间的关联过多;没有合理的字段设计来用于查询而造成的SQL查询语句很复杂;对于大数据量的表没有采用有效的手段去处理;滥用视图等。3. 数据完整性丧失含有主外键关系的表之间关联字段的设计方式不合理,造成更新与删除操作后程序容易出错或不完善;使用了已经删除或丢失掉的数据。4. 可扩展性性太差表设计的与业务绑定的太紧密、单一,造成表的可拓展性、可修改性太差,无法新需求的要求。5. 非必要数据冗余量太大没用的垃圾数据存储过多,不仅占用资源,还影响查询效率。6. 不利于计算或统计缺少必要的联系性或统计性字段或用于计算统计的字段分散于多个表中,造成计算统计的步骤繁琐,甚至无法计算统计。7. 没有详尽的数据记录信息缺少必要的字段,造成无法跟踪数据变化、用户操作,也无法进行数据分析。8. 表之间的耦合性太大多张表之间关联的过于紧密,造成一张表发生变化而影响到其他表。9. 字段设计考虑不周字段长度过短或字段类型过于明确,造成可发挥、可拓展的空间太小。大多数的程序员对于软件开发的出发点认识不是很明确,总是认为实现功能才是重要的,在简单了解完基本需求后就急忙进入编码阶段,对于数据库设计思考的比较少、比较简单,大多设计都只停留在表面上,这往往是要命的,会为系统留下很多隐患。要么是写代码开发过程中才发现问题,要么就是系统上线运转后没多久就出现问题,还有可能给后期维护增加了很多工作量。如果到了那个时候再想修改数据库设计或进行优化等同于推翻重来。数据库是整个软件应用的根基,是软件设计的起点,它起着决定性的质变作用,因此我们必须对数据库设计高度重视起来,培养设计良好数据库的习惯,是一个优秀的软件设计师所必须具备的基本素质条件!那么我们要做到什么程度才是对的呢?下面就说说数据库设计的原则1. 数据库设计最起码要占用整个项目开发的40%以上的时间数据库是需求的直观反应和表现,因此设计时必须要切实符合用户的需求,要多次与用户沟通交流来细化需求,将需求中的要求和每一次的变化都要一一体现在数据库的设计当中。如果需求不明确,就要分析不确定的因素,设计表时就要事先预留出可变通的字段,正所谓“有备无患”。2. 数据库设计不仅仅停留于页面demo的表面页面内容所需要的字段,在数据库设计中只是一部分,还有系统运转、模块交互、中转数据、表之间的联系等等所需要的字段,因此数据库设计绝对不是简单的基本数据存储,还有逻辑数据存储。3. 数据库设计完成后,项目80%的设计开发在你脑海中就已经完成了每个字段的设计都是有他必要的意义的,你在设计每一个字段的同时,就应该已经想清楚程序中如何去运用这些字段,多张表的联系在程序中是如何体现的。换句话说,你完成数据库设计后,程序中所有的实现思路和实现方式在你的脑海中就已经考虑过了。如果达不到这种程度,那当进入编码阶段后,才发现要运用的技术或实现的方式数据库无法支持,这时再改动数据库就会很麻烦,会造成一系列不可预测的问题。4. 数据库设计时就要考虑到效率和优化问题一开始就要分析哪些表会存储较多的数据量,对于数据量较大的表的设计往往是粗粒度的,也会冗余一些必要的字段,已达到尽量用最少的表、最弱的表关系去存储海量的数据。并且在设计表时,一般都会对主键建立聚集索引,含有大数据量的表更是要建立索引以提供查询性能。对于含有计算、数据交互、统计这类需求时,还要考虑是否有必要采用存储过程。5. 添加必要的(冗余)字段像“创建时间”、“修改时间”、“备注”、“操作用户IP”和一些用于其他需求(如统计)的字段等,在每张表中必须都要有,不是说只有系统中用到的数据才会存到数据库中,一些冗余字段是为了便于日后维护、分析、拓展而添加的,这点是非常重要的,比如黑客攻击,篡改了数据,我们便就可以根据修改时间和操作用户IP来查找定位。6. 设计合理的表关联若多张表之间的关系复杂,建议采用第三张映射表来关联维护两张表之间的关系,以降低表之间的直接耦合度。若多张表涉及到大数据量的问题,表结构尽量简单,关联也要尽可能避免。7. 设计表时不加主外键等约束性关联,系统编码阶段完成后再添加约束性关联这样做的目的是有利于团队并行开发,减少编码时所遇到的问题,表之间的关系靠程序来控制。编码完成后再加关联并进行测试。不过也有一些公司的做法是干脆就不加表关联。8. 选择合适的主键生成策略主键生成策略大致可分:int自增长类型(identity、sequence)、手动增长类型(建立单独一张表来维护)、手动维护类型(如userId)、字符串类型(uuid、guid)。int型的优点是使用简单、效率高,但多表之间数据合并时就很容易出现问题,手动增长类型和字符串类型能很好解决多表数据合并的问题,但同样也都有缺点:前者的缺点是增加了一次数据库访问来获取主键,并且又多维护一张主键表,增加了复杂度;而后者是非常占用存储空间,且表关联查询的效率低下,索引的效率也不高,跟int类型正好相反。终上所述,我们可见数据库设计在整个软件开发的起到的举足轻重的作用,尤其是我说的设计原则的第一点,数据库与需求是相辅相成的,我经常把软件开发比作汽车制造。汽车制造会经过图纸设计,模型制作,样车制造,小批量试生产,最后是批量生产等步骤。整个过程环环相扣,后一过程是建立在前一过程正确的前提基础之上的。如果在图纸设计阶段发现了一个纰漏,我们可以重新进行图纸设计,如果到了样车制造阶段发现这个错误,那么我们就要把从图纸设计到样车制造的阶段重来,越到后面发现设计上的问题,所付出的代价越大,修改的难度也越大。数据库设计难度其实要比单纯的技术实现的难很多,他充分体现了一个人的全局设计能力和掌控能力,所以在今后的项目中大家一定要着重培养这方面的能力,这里我将我的经验分享给了大家,希望能对大家有所帮助。

5,在系统实施中数据库设计的原则

1. 原始单据与实体之间的关系  可以是一对一、一对多、多对多的关系。在一般情况下,它们是一对一的关系:即一张原始单据对应且只对应一个实体。 在特殊情况下,它们可能是一对多或多对一的关系,即一张原始单证对应多个实体,或多张原始单证对应一个实体。 这里的实体可以理解为基本表。  〖例1〗:一份员工履历资料,在人力资源信息系统中,就对应三个基本表:员工基本情况表、社会关系表、工作简历表。 这就是“一张原始单证对应多个实体”的典型例子。 2. 主键与外键  一般而言,一个实体不能既无主键又无外键。在E—R 图中, 处于叶子部位的实体, 可以定义主键,也可以不定义主键 (因为它无子孙), 但必须要有外键(因为它有父亲)。   主键与外键的设计,在全局数据库的设计中,占有重要地位。主键是实体的高度抽象,主键与外键的配对,表示实体之间的连接。 3. 基本表的性质   基本表与中间表、临时表不同,因为它具有如下四个特性:    (1) 原子性。基本表中的字段是不可再分解的。    (2) 原始性。基本表中的记录是原始数据(基础数据)的记录。    (3) 演绎性。由基本表与代码表中的数据,可以派生出所有的输出数据。    (4) 稳定性。基本表的结构是相对稳定的,表中的记录是要长期保存的。   理解基本表的性质后,在设计数据库时,就能将基本表与中间表、临时表区分开来。 4. 范式标准   基本表及其字段之间的关系, 应尽量满足第三范式。但是,满足第三范式的数据库设计,往往不是最好的设计。   为了提高数据库的运行效率,常常需要降低范式标准:适当增加冗余,达到以空间换时间的目的。   〖例2〗:有一张存放商品的基本表,如表1所示。“金额”这个字段的存在,表明该表的设计不满足第三范式, 因为“金额”可以由“单价”乘以“数量”得到,说明“金额”是冗余字段。但是,增加“金额”这个冗余字段, 可以提高查询统计的速度,这就是以空间换时间的作法。 在Rose 2002中,规定列有两种类型:数据列和计算列。“金额”这样的列被称为“计算列”,而“单价”和 “数量”这样的列被称为“数据列”。 5. 通俗地理解三个范式  通俗地理解三个范式,对于数据库设计大有好处。在数据库设计中,为了更好地应用三个范式,就必须通俗地理解   三个范式(通俗地理解是够用的理解,并不是最科学最准确的理解):   第一范式:1NF是对属性的原子性约束,要求属性具有原子性,不可再分解;   第二范式:2NF是对记录的惟一性约束,要求记录有惟一标识,即实体的惟一性;   第三范式:3NF是对字段冗余性的约束,即任何字段不能由其他字段派生出来,它要求字段没有冗余。   没有冗余的数据库设计可以做到。但是,没有冗余的数据库未必是最好的数据库,有时为了提高运行效率,就必须降   低范式标准,适当保留冗余数据。具体做法是:在概念数据模型设计时遵守第三范式,降低范式标准的工作放到物理   数据模型设计时考虑。降低范式就是增加字段,允许冗余。 6. 要善于识别与正确处理多对多的关系   若两个实体之间存在多对多的关系,则应消除这种关系。消除的办法是,在两者之间增加第三个实体。这样,原来一   个多对多的关系,现在变为两个一对多的关系。要将原来两个实体的属性合理地分配到三个实体中去。这里的第三个   实体,实质上是一个较复杂的关系,它对应一张基本表。一般来讲,数据库设计工具不能识别多对多的关系,但能处   理多对多的关系。   〖例3〗:在“图书馆信息系统”中,“图书”是一个实体,“读者”也是一个实体。这两个实体之间的关系,是一 个典型的多对多关系:一本图书在不同时间可以被多个读者借阅,一个读者又可以借多本图书。为此,要在二者之 间增加第三个实体,该实体取名为“借还书”,它的属性为:借还时间、借还标志(0表示借书,1表示还书),另外, 它还应该有两个外键(“图书”的主键,“读者”的主键),使它能与“图书”和“读者”连接。 7. 主键PK的取值方法    PK是供程序员使用的表间连接工具,可以是一无物理意义的数字串, 由程序自动加1来实现。也可以是有物理意义   的字段名或字段名的组合。不过前者比后者好。当PK是字段名的组合时,建议字段的个数不要太多,多了不但索引 占用空间大,而且速度也慢。 8. 正确认识数据冗余  主键与外键在多表中的重复出现, 不属于数据冗余,这个概念必须清楚,事实上有许多人还不清楚。非键字段的重复出现, 才是数据冗余!而且是一种低级冗余,即重复性的冗余。高级冗余不是字段的重复出现,而是字段的派生出现。   〖例4〗:商品中的“单价、数量、金额”三个字段,“金额”就是由“单价”乘以“数量”派生出来的,它就是冗余,而且是一种高级冗余。冗余的目的是为了提高处理速度。只有低级冗余才会增加数据的不一致性,因为同一数据,可 能从不同时间、地点、角色上多次录入。因此,我们提倡高级冗余(派生性冗余),反对低级冗余(重复性冗余)。 9. E--R图没有标准答案  信息系统的E--R图没有标准答案,因为它的设计与画法不是惟一的,只要它覆盖了系统需求的业务范围和功能内容,就是可行的。反之要修改E--R图。尽管它没有惟一的标准答案,并不意味着可以随意设计。好的E—R图的标准是: 结构清晰、关联简洁、实体个数适中、属性分配合理、没有低级冗余。 10 . 视图技术在数据库设计中很有用   与基本表、代码表、中间表不同,视图是一种虚表,它依赖数据源的实表而存在。视图是供程序员使用数据库的 一个窗口,是基表数据综合的一种形式, 是数据处理的一种方法,是用户数据保密的一种手段。为了进行复杂处理、 提高运算速度和节省存储空间, 视图的定义深度一般不得超过三层。 若三层视图仍不够用, 则应在视图上定义临时表, 在临时表上再定义视图。这样反复交迭定义, 视图的深度就不受限制了。   对于某些与国家政治、经济、技术、军事和安全利益有关的信息系统,视图的作用更加重要。这些系统的基本表完 成物理设计之后,立即在基本表上建立第一层视图,这层视图的个数和结构,与基本表的个数和结构是完全相同。 并且规定,所有的程序员,一律只准在视图上操作。只有数据库管理员,带着多个人员共同掌握的“安全钥匙”, 才能直接在基本表上操作。11. 中间表、报表和临时表  中间表是存放统计数据的表,它是为数据仓库、输出报表或查询结果而设计的,有时它没有主键与外键(数据仓 库除外)。临时表是程序员个人设计的,存放临时记录,为个人所用。基表和中间表由DBA维护,临时表由程序员 自己用程序自动维护。 12. 完整性约束表现在三个方面   域的完整性:用Check来实现约束,在数据库设计工具中,对字段的取值范围进行定义时,有一个Check按钮,通 过它定义字段的值城。   参照完整性:用PK、FK、表级触发器来实现。   用户定义完整性:它是一些业务规则,用存储过程和触发器来实现。 13. 防止数据库设计打补丁的方法是“三少原则”    (1) 一个数据库中表的个数越少越好。只有表的个数少了,才能说明系统的E--R图少而精,去掉了重复的多余的 实体,形成了对客观世界的高度抽象,进行了系统的数据集成,防止了打补丁式的设计;    (2) 一个表中组合主键的字段个数越少越好。因为主键的作用,一是建主键索引,二是做为子表的外键,所以组 合主键的字段个数少了,不仅节省了运行时间,而且节省了索引存储空间;    (3) 一个表中的字段个数越少越好。只有字段的个数少了,才能说明在系统中不存在数据重复,且很少有数据冗 余,更重要的是督促读者学会“列变行”,这样就防止了将子表中的字段拉入到主表中去,在主表中留下许 多空余的字段。所谓“列变行”,就是将主表中的一部分内容拉出去,另外单独建一个子表。这个方法很简 单,有的人就是不习惯、不采纳、不执行。 数据库设计的实用原则是:在数据冗余和处理速度之间找到合适的平衡点。“三少”是一个整体概念,综合观点, 不能孤立某一个原则。该原则是相对的,不是绝对的。“三多”原则肯定是错误的。试想:若覆盖系统同样的功 能,一百个实体(共一千个属性) 的E--R图,肯定比二百个实体(共二千个属性) 的E--R图,要好得多。 提倡“三少”原则,是叫读者学会利用数据库设计技术进行系统的数据集成。数据集成的步骤是将文件系统集成 为应用数据库,将应用数据库集成为主题数据库,将主题数据库集成为全局综合数据库。集成的程度越高,数据 共享性就越强,信息孤岛现象就越少,整个企业信息系统的全局E—R图中实体的个数、主键的个数、属性的个数就会越少。   提倡“三少”原则的目的,是防止读者利用打补丁技术,不断地对数据库进行增删改,使企业数据库变成了随意设计数据库表的“垃圾堆”,或数据库表的“大杂院”,最后造成数据库中的基本表、代码表、中间表、临时表杂乱无章,不计其数,导致企事业单位的信息系统无法维护而瘫痪。 “三多”原则任何人都可以做到,该原则是“打补丁方法”设计数据库的歪理学说。“三少”原则是少而精的 原则,它要求有较高的数据库设计技巧与艺术,不是任何人都能做到的,因为该原则是杜绝用“打补丁方法”   设计数据库的理论依据。 14. 提高数据库运行效率的办法  在给定的系统硬件和系统软件条件下,提高数据库系统的运行效率的办法是:    (1) 在数据库物理设计时,降低范式,增加冗余, 少用触发器, 多用存储过程。    (2) 当计算非常复杂、而且记录条数非常巨大时(例如一千万条),复杂计算要先在数据库外面,以文件系统方 式用C++语言计算处理完成之后,最后才入库追加到表中去。这是电信计费系统设计的经验。    (3) 发现某个表的记录太多,例如超过一千万条,则要对该表进行水平分割。水平分割的做法是,以该表主键 PK的某个值为界线,将该表的记录水平分割为两个表。若发现某个表的字段太多,例如超过八十个,则垂直分割该表,将原来的一个表分解为两个表。    (4) 对数据库管理系统DBMS进行系统优化,即优化各种系统参数,如缓冲区个数。    (5) 在使用面向数据的SQL语言进行程序设计时,尽量采取优化算法。 总之,要提高数据库的运行效率,必须从数据库系统级优化、数据库设计级优化、程序实现级优化,这三个层次上同时下功夫。   上述十四个技巧,是许多人在大量的数据库分析与设计实践中,逐步总结出来的。对于这些经验的运用,读者不能生帮硬套,死记硬背,而要消化理解,实事求是,灵活掌握。并逐步做到:在应用中发展,在发展中应用。

文章TAG:数据库编写原则包括哪些  开发中数据库设计原则  
下一篇