本文目录一览

1,计算机网络简述OSPF用于路由器交换路由信息的分组的数据部分

11种,你说的就是LSA类型。具体如下:LSA1 路由器LSA(Router LSA)LSA2 网络LSA(Network LSA)LSA3 网络汇总LSA(Network summary LSA)LSA4 ASBR汇总LSA(ASBR summary LSA)LSA5 自治系统外部LSA (Autonomous system external LSA)LSA6 组成员LSA (Group membership LSA) *目前不支持组播OSPF (MOSPF协议)LSA7 NSSA外部LSA (NSSA External LSA)LSA8 BGP的外部属性LSA(External attributes LSA for BGP)LSA9 不透明LSA(本地链路范围) (opaque LSA) *目前主要用于MPLS多协议标签交换协议LSA10 不透明LSA(本地区域范围) (opaque LSA) *目前主要用于MPLS多协议标签交换协议LSA11 不透明LSA(AS范围) (opaque LSA) *目前主要用于MPLS多协议标签交换协议
任务占坑

计算机网络简述OSPF用于路由器交换路由信息的分组的数据部分

2,常用路由技术简析RIPOSPFBGP

RIP是路由信息协议(Routing Information Protocol)的缩写,采用距离向量算法,是当今应用最为广泛的内部网关协议。在默认情况下,RIP使用一种非常简单的度量制度:距离就是通往目的站点所需经过的链路数,取值为1~15,数值16表示无穷大。RIP进程使用UDP的520端口来发送和接收RIP分组。RIP分组每隔30s以广播的形式发送一次,为了防止出现“广播风暴”,其后续的的分组将做随机延时后发送。在RIP中,如果一个路由在180s内未被刷,则相应的距离就被设定成无穷大,并从路由表中删除该表项。RIP分组分为两种:请求分组和相应分组。RIP-1被提出较早,其中有许多缺陷。为了改善RIP-1的不足,在RFC1388中提出了改进的RIP-2,并在RFC 1723和RFC 2453中进行了修订。RIP-2定义了一套有效的改进方案,新的RIP-2支持子网路由选择,支持CIDR,支持组播,并提供了验证机制。 随着OSPF和IS-IS的出现,许多人认为RIP已经过时了。但事实上RIP也有它自己的优点。对于小型网络,RIP就所占带宽而言开销小,易于配置、管理和实现,并且RIP还在大量使用中。但RIP也有明显的不足,即当有多个网络时会出现环路问题。为了解决环路问题,IETF提出了分割范围方法,即路由器不可以通过它得知路由的接口去宣告路由。分割范围解决了两个路由器之间的路由环路问题,但不能防止3个或多个路由器形成路由环路。触发更新是解决环路问题的另一方法,它要求路由器在链路发生变化时立即传输它的路由表。这加速了网络的聚合,但容易产生广播泛滥。总之,环路问题的解决需要消耗一定的时间和带宽。若采用RIP协议,其网络内部所经过的链路数不能超过15,这使得RIP协议不适于大型网络。 为了解决RIP协议的缺陷,1988年RFC成立了OSPF工作组,开始着手于OSPF的研究与制定,并于1998年4月在RFC 2328中OSPF协议第二版(OSPFv2)以标准形式出现。OSPF全称为开放式最短路径优先协议(Open Shortest-Path First),OSPF中的O意味着OSPF标准是对公共开放的,而不是封闭的专有路由方案。OSPF采用链路状态协议算法,每个路由器维护一个相同的链路状态数据库,保存整个AS的拓扑结构(AS不划分情况下)。一旦每个路由器有了完整的链路状态数据库,该路由器就可以自己为根,构造最短路径树,然后再根据最短路径构造路由表。对于大型的网络,为了进一步减少路由协议通信流量,利于管理和计算,OSPF将整个AS划分为若干个区域,区域内的路由器维护一个相同的链路状态数据库,保存该区域的拓扑结构。OSPF路由器相互间交换信息,但交换的信息不是路由,而是链路状态。OSPF定义了5种分组:Hello分组用于建立和维护连接;数据库描述分组初始化路由器的网络拓扑数据库;当发现数据库中的某部分信息已经过时后,路由器发送链路状态请求分组,请求邻站提供更新信息;路由器使用链路状态更新分组来主动扩散自己的链路状态数据库或对链路状态请求分组进行响应;由于OSPF直接运行在IP层,协议本身要提供确认机制,链路状态应答分组是对链路状态更新分组进行确认。 相对于其它协议,OSPF有许多优点。OSPF支持各种不同鉴别机制(如简单口令验证,MD5加密验证等),并且允许各个系统或区域采用互不相同的鉴别机制;提供负载均衡功能,如果计算出到某个目的站有若干条费用相同的路由,OSPF路由器会把通信流量均匀地分配给这几条路由,沿这几条路由把该分组发送出去;在一个自治系统内可划分出若干个区域,每个区域根据自己的拓扑结构计算最短路径,这减少了OSPF路由实现的工作量;OSPF属动态的自适应协议,对于网络的拓扑结构变化可以迅速地做出反应,进行相应调整,提供短的收敛期,使路由表尽快稳定化,并且与其它路由协议相比,OSPF在对网络拓扑变化的处理过程中仅需要最少的通信流量;OSPF提供点到多点接口,支持CIDR(无类型域间路由)地址。 OSPF的不足之处就是协议本身庞大复杂,实现起来较RIP困难。 RFC1771对BGP的最新版本BGP-4进行了详尽的介绍。BGP用来在AS之间实现网络可达信息的交换,整个交换过程要求建立在可靠的传输连接基础上来实现。这样做有许多优点,BGP可以将所有的差错控制功能交给传输协议来处理,而其本身就变得简单多了。BGP使用TCP作为其传输协议,缺省端口号为179。与EGP相比,BGP有许多不同之处,其最重要的革新就是其采用路径向量的概念和对CIDR技术的支持。路径向量中记录了路由所经路径上所有AS的列表,这样可以有效地检测并避免复杂拓扑结构中可能出现的环路问题;对CIDR的支持,减少了路由表项,从而加快了选路速度,也减少了路由器间所要交换的路由信息。另外,BGP一旦与其他BGP路由器建立对等关系,其仅在最初的初始化过程中交换整个路由表,此后只有当自身路由表发生改变时,BGP才会产生更新报文发送给其它路由器,且该报文中仅包含那些发生改变的路由,这样不但减少了路由器的计算量,而且节省了BGP所占带宽。 BGP有4种分组类型:打开分组用来建立连接;更新分组用来通告可达路由和撤销无效路由;周期性地发送存活分组,以确保连接的有效性;当检测到一个差错时,发送通告分组。

常用路由技术简析RIPOSPFBGP

3,MPLS什么怎么一回事 谁能帮我介绍一下 与ospf的lsa 91011 类

lsa 9 10 11 是用来做mpls te的 其中只有10是起到重要作用的 mpls te 只支持ospf 或者是is-is你这问题太大了...你可以提得细致一点 然后我们讨论一下
MPLS 是多协议标签交换,工作在2.5层,多协议标签交换(MPLS)是一种用于快速数据包交换和路由的体系,它为网络数据流量提供了目标、路由、转发和交换等能力。更特殊的是,它具有管理各种不同形式通信流的机制。MPLS 独立于第二和第三层协议,诸如ATM 和IP。它提供了一种方式,将 IP地址映射为简单的具有固定长度的标签,用于不同的包转发和包交换技术。它是现有路由和交换协议的接口,如IP、ATM、帧中继、资源预留协议(RSVP)、开放最短路径优先(OSPF)等等。   在MPLS 中,数据传输发生在标签交换路径(LSP)上。LSP 是每一个沿着从源端到终端的路径上的结点的标签序列。现今使用着一些标签分发协议,如标签分发协议(LDP)、RSVP 或者建于路由协议之上的一些协议,如边界网关协议(BGP)及OSPF。因为固定长度标签被插入每一个包或信元的开始处,并且可被硬件用来在两个链接间快速交换包,所以使数据的快速交换成为可能。   MPLS 主要设计来解决网路问题,如网路速度、可扩展性、服务质量(QoS)管理以及流量工程,同时也为下一代IP 中枢网络解决宽带管理及服务请求等问题。   在这部分,我们主要关注通用MPLS 框架。有关LDP、CR-LDP 和RSVP-TE 的具体内容可以参考个别文件。   多协议标签交换MPLS最初是为了提高转发速度而提出的。与传统IP路由方式相比,它在数据转发时,只在网络边缘分析IP报文头,而不用在每一跳都分析IP报文头,从而节约了处理时间。   MPLS起源于IPv4(Internet Protocol version 4),其核心技术可扩展到多种网络协议,包括IPX(Internet Packet Exchange)、Appletalk、DECnet、CLNP(Connectionless Network Protocol)等。“MPLS”中的“Multiprotocol”指的就是支持多种网络协议。LSA总体上来说,有以下几种:1.类型1:Router LSA2.类型2:Network LSA3.类型3:Network Summary LSA4.类型4:ASBR Summary LSA5.类型5:AS External LSA6.类型6:Group Membership LSA7.类型7:NSSA External LSA8.类型8:External Attributes LSA9.类型9:Opaque LSA(link-local scope)10.类型10:Opaque LSA(area-local scope)11.类型11:Opaque LSA(AS scope)下面来进行详细的解释。1.Router LSA 每台路由器都创建1类LSA,用于向它连接的每个区域描述自己。在每台路由器中,每个区域的LSDB都包含一个1类的LSA,它指出了当前路由器的RID和所有接口的IP地址,1类LSA还用于描述末梢网路。 1类LSA使用OSPF路由器ID标示OSPF路由器。每台路由器都创建一个1类的LSA并泛洪到整个区域。为了泛洪LSA,始发路由器将1类LSA发 送给当前区域内的邻居,然后邻居再将其发送给当前区域的其他邻居,以此类推,知道区域内的所有路由器都有该LSA的拷贝。 1类LSA包含信息:对于没有选举DR的每个接口,指出接口的子网号/掩码和OSPF开销 对于选举了DR的每个接口,指出DR的IP地址以及连接到中转网络的链路。 对于没有选举DR但是通过它可以到达一个邻居的接口,指出该邻居的RID。 每台内部路由器都创建一个1类的LSA,但是ABR创建多个1类LSA,每个区域都有一个。此种LSA 可以通过show ip ospf database router 查看router LSA2:Network LSA 每个多路访问网络中,子网中的DR都会创建Network LSA,描述了子网及连接到该子网的路由器借口。它只在产生这条Network LSA 的区域泛洪描述了所有和它相连的路由器(包括DR 本身)。Show ip ospf database network 可以看到Network LSA3:Network Summary LSA 由ABR创建,描述了一个区域的1类和2类LSA中包含的子网,被通告到另一个区域。它指出了始发区域的链路(子网)和开销,但是没有拓扑数据。 如果ABR 知道有多条路径可以到达目标地址,但是它仍然只发送单个的Network Summary LSA,并且是开销最低的那条;同样,如果ABR 从其他的ABR那里收到多条Network Summary LSA 的话,它会只选择开销最低的,并把这条Network Summary LSA 宣告给其他区域 当其他的路由器收到来自ABR 的NetworkSummary LSA 以后,它不会运行SPF 算法,它只简单的 加上到达那个ABR 的开销和Network Summary LSA中包含的开销,通过ABR,到达目标地址的路由和开销一起被加进路由表里,这种依赖中间路由器来确定到达目标地址的完全路由(full route)实际上是距离矢量路由协议的行为可以使用show ip ospf database summary 查看Network Summary LSA4:ASBR Summary LSA 类似于3类LSA,只是通告一条用于前往ASBR的主机路由,而不是一个网络。使用show ip ospf database asbr-summary 可以看到ASBR Summary LSA5:AS External LSA AS外部LSA,由ASBR创建,用于描述被注入到OSPF中的外部路由。这种LSA 将在全AS 内泛洪。可以使用show ip ospf database external看AS External LSA6:Group Membership LSA 组成员关系LSA,这是为MOSPF定义的,思科的IOS不支持。7:NSSA External LSA NSSA外部LSA,来自非完全Stub 区域(not-so-stubby area)内,类似于5类LSA,只不过是由NSSA区域中的ASBR创建,只在NSSA 区域内泛洪。使用命令Show ip ospf database nssa-external可以看NSSA External LSA8:External Attributes LSA 外部属性LSA,思科路由器不能实现。9--11:Opaque LSA不透明LSA,用作通用LSA,以方便扩展OSPF。(如:为了支持MPLS流量工程而修改了类型10的LSA。)最后,再说下OSPF中各种区域会产生的LSA:骨干:12345STUB:1234NSSA :1237

MPLS什么怎么一回事 谁能帮我介绍一下 与ospf的lsa 91011 类


文章TAG:bgp数据库类型有哪些  计算机网络简述OSPF用于路由器交换路由信息的分组的数据部分  
下一篇