本文目录一览

1,开源内存数据库有几种啊

常见的有FastDB、SQLite、Berkeley DB、GigaBASE,H2等
比较常用的有fastdb、sqlite、berkeley db、gigabase等

开源内存数据库有几种啊

2,CC开发的开源的分布式内存数据库有哪些

1.最简单的方法:public static string reverse1(string str)return new stringbuffer(str).reverse().tostring();}2.最常用的方法:public static string reverse3(string s)char[] array = s.tochararray(); string reverse = ""; //注意这是空串,不是nullfor (int i = array.length - 1; i >= 0; i--) reverse += array[i]; return reverse; }

CC开发的开源的分布式内存数据库有哪些

3,Oracle中三个主要的内存区域

内存是影响数据库性能的重要因素,oracle8i使用静态内存管理,oracle 10g使用动态 内存管理。所谓静态内存管理,就是在数据库系统中,无论是否有用户连接,也无论并发用 量大小,只要数据库服务在运行,就会分配固定大小的内存;动态内存管理允许在数据库服 务运行时对内存的大小进行修改,读取大数据块时使用大内存,小数据块时使用小内存,读 取标准内存块时使用标准内存设置。 按照系统对内存使用方法的不同,oracle数据库的内存可以分为以下几个部分: ??系统全局区:sga(system global area) ??程序全局区:pga(programe global area) ??排序池:(sort area) ??大池:(large pool) ??java池:(java pool)
SGA里面的吗?分别是:data buffer、log buffer、shared pool。

Oracle中三个主要的内存区域

4,在windows下用哪些内存数据库类似redis的

内存数据库从范型上可以分为关系型内存数据库和键值型内存数据库。在实际应用中内存数据库主要是配合oracle或mysql等大型关系数据库使用,关注性能。作用类似于缓存,并不注重数据完整性和数据一致性。基于键值型的内存数据库比关系型更加易于使用,性能和可扩展性更好,因此在应用上比关系型的内存数据库使用更多。比较FastDB、Memcached和Redis主流内存数据库的功能特性。 FastDB的特点包括如下方面:1、FastDB不支持client-server架构因而所有使用FastDB的应用程序必须运行在同一主机上;2、fastdb假定整个数据库存在于RAM中,并且依据这个假定优化了查询算法和接口。3、fastdb没有数据库缓冲管理开销,不需要在数据库文件和缓冲池之间传输数据。4、整个fastdb的搜索算法和结构是建立在假定所有的数据都存在于内存中的,因此数据换出的效率不会很高。5、Fastdb支持事务、在线备份以及系统崩溃后的自动恢复。6、fastdb是一个面向应用的数据库,数据库表通过应用程序的类信息来构造。 FastDB不能支持Java API接口,这使得在本应用下不适合使用FastDB。Memcached Memcached是一种基于Key-Value开源缓存服务器系统,主要用做数据库的数据高速缓冲,并不能完全称为数据库。 memcached的API使用三十二位元的循环冗余校验(CRC-32)计算键值后,将资料分散在不同的机器上。当表格满了以后,接下来新增的资料会以LRU机制替换掉。由于 memcached通常只是当作缓存系统使用,所以使用memcached的应用程式在写回较慢的系统时(像是后端的数据库)需要额外的程序更新memcached内的资料。 memcached具有多种语言的客户端开发包,包括:Perl、PHP、JAVA、C、Python、Ruby、C#。Redis Redis是一个高性能的key-value数据库。redis的出现,很大程度补偿了memcached这类keyvalue存储的不足,在部分场合可以对关系数据库起到很好的补充作用。它提供了C++、Java、Python,Ruby,Erlang,PHP客户端。

5,几种Nosql数据库对比

NoSQL不像传统关系型库那样有统一的标准,也不具有普适性。所以要根据应用和数据的存取特征来选择适合的NoSQL。如果以前没有接触过NoSQL,MongoDB是一个比较好的选择,他支持的所以和查询能力是所有NoSQL中最强大的,缺点是索引的成本和文档大小限制。如果是使用Hadoop大数据分析,数据基本上不存在修改,只是插入和查询,并且需要配合Hadoop的MR任务,HBase会是很好的选择。如果要求有很强的扩展能力,高并发读写和维护方便,Casaandra则是不错的选择。当然除了上面三个流行的NoSQL,还有很多优秀的NoSQL数据库,而且他们都有各自擅长领域,所以需要了解你们产品自身的特点然后分析选择哪种才是最适合的,往往在大型系统中不是单一的数据库,而是使用多种数据库组合。
nosql太火,冒出太多产品了,保守估计也成百上千了。互联网公司常用的基本集中在以下几种,每种只举一个比较常见或者应用比较成功的例子吧。1. in-memory kv store : redisin memory key-value store,同时提供了更加丰富的数据结构和运算的能力,成功用法是替代memcached,通过checkpoint和commit log提供了快速的宕机恢复,同时支持replication提供读可扩展和高可用。2. disk-based kv store: leveldb真正基于磁盘的key-value storage, 模型单一简单,数据量不受限于内存大小,数据落盘高可靠,google的几位大神出品的精品,lsm模型天然写优化,顺序写盘的方式对于新硬件ssd再适合不过了,不足是仅提供了一个库,需要自己封装server端。3. document store: mongodb分布式nosql,具备了区别mysql的最大亮点:可扩展性。mongodb 最新引人的莫过于提供了sql接口,是目前nosql里最像mysql的,只是没有acid的特性,发展很快,支持了索引等特性,上手容易,对于数据量远超内存限制的场景来说,还需要慎重。4. column table store: hbase这个富二代似乎不用赘述了,最大的优势是开源,对于普通的scan和基于行的get等基本查询,性能完全不是问题,只是只提供裸的api,易用性上是短板,可扩展性方面是最强的,其次坐上了hadoop的快车,社区发展很快,各种基于其上的开源产品不少,来解决诸如join、聚集运算等复杂查询。

文章TAG:apache  内存  内存数据库  数据  apache内存数据库有哪些  
下一篇