本文目录一览

1,有哪些设计数据结构方面的小技巧

数据库设计方法、规范与技巧 一、数据库设计过程 数据库技术是信息资源管理最有效的手段。数据库设计是指对于一个给定的应用环境,构造最优的数据库模式,建立数据库及其应用系统,有效存储数据,满足用户信息要求和处理要求。
这个应用就很多了,最多的地方是用在写底层的系统软件中,如编写一个操作系统、数据库管理系统、编译系统等,会用到大量的数据结构知识,如链表、树、图等;在应用软件中,也会使用到很多,例如对数组排序,从数组中查找数据,查找地图中两个地点之间的最短路径等,这些应用在大多数语言和api接口中已经提供了相应方法,但是如果要自己做一个类似的应用系统(如自己做一个类似于百度地图的东东),就需要大量数据结构知识了。

有哪些设计数据结构方面的小技巧

2,怎样设计高性能的数据库

高性能数据库设计原则:1. 原始单据与实体之间的关系 2. 主键与外键 3. 基本表的性质 基本表与中间表、临时表不同,因为它具有如下四个特性: (1) 原子性。基本表中的字段是不可再分解的。 (2) 原始性。基本表中的记录是原始数据(基础数据)的记录。 (3) 演绎性。由基本表与代码表中的数据,可以派生出所有的输出数据。 (4) 稳定性。基本表的结构是相对稳定的,表中的记录是要长期保存的。 4. 范式标准 5. 通俗地理解三个范式 第一范式:1NF是对属性的原子性约束,要求属性具有原子性,不可再分解; 第二范式:2NF是对记录的惟一性约束,要求记录有惟一标识,即实体的惟一性; 第三范式:3NF是对字段冗余性的约束,即任何字段不能由其他字段派生出来,要求字段没有冗余。 6. 要善于识别与正确处理多对多的关系 7. 主键PK的取值方法 8. 正确认识数据冗余 9. E--R图没有标准答案 10 . 视图技术在数据库设计中很有用 11. 中间表、报表和临时表 12. 完整性约束表现在三个方面 13. 防止数据库设计打补丁的方法是“三少原则” 14. 提高数据库运行效率的办法
1、使你的数据库结构规范化,但是不要求一定达到第三范式,为了显示和打印目的可以有数据冗余2、评估你的系统中对性能影响的关键处,减少被频繁访问的核心表的数量,并在这些核心表上重点优化索引,表结构(尽量紧凑)。典型的核心表是代码表。3、对于统计类应用,如果可能应写成触发器和存储过程,这样就有可能把一个消耗大量时间的统计运算分布到每insert,delete,或者update来处理,从而极大提高查询类操作的速度。查询选择群居索引最有效。其他索引也要针对业务进行选择。由于维护索引也要消耗系统资源和时间,所以过多的索引对性能是损害甚至是毫无效果的。5、如果可能,可以利用大数据库对sql的一些特殊规定来进一步优化,比如查询暗示。6、适当选择硬件,综合考虑cpu,内存,i/o系统的性能,以当前的cpu,内存配置来看,很多数据库系统的瓶颈出在i/o系统上。所以如果有可能,最好使用raid。当然如果你有足够的财力,可以买更好的服务器,或者搞服务器集群就更利害啦。7、可能的话,尽量使用存储过程,因为存储过程的执行计划可以重复使用,而且不需要象普通由client提交的sql那样进行处理和编译。8、检查你的应用程序设计,如果有可能,尽量减少查询次数和在网络上往返的数据。为了获取少量字段而写select * 对性能的损害也比较利害。9、在应用程序中协调并发和一致性之间的矛盾。并不是所有业务都需要放在事务中。大量业务是允许脏读的,在不关键事务中使用脏读,或者读提交,可以大大降低deadlock和进程之间彼此等待的机会,从而把由于互相锁定资源引起的等待降低到最小。不要在事务执行中进行大量计算或者与用户交互的操作,因为事务的执行在要求上是不允许被打断的原子操作(回滚是失败的),所以事务应该多而短小。长事务会锁住很多资源比较长的时间,因此也比较容易导致其他进程对资源的等待和死锁的机会。10、评估你开发系统的关键业务,在很多数据库系统对性能的要求是彼此矛盾的,比如oltp应用和dss是不同的。dss倾向于使用各种索引加快检索速度,而大量的索引对oltp则是负担。11、不要在应用程序中写怪异的sql 查询,比如 where money!40000,这样的语句,这种sql查询,数据库的sql优化器是无法进行优化的。12、定期维护和管理你的数据库系统,压缩掉那些垃圾空间,很多数据库系统执行类似删除,事务等操作的时候,并不回收无用的物理空间。所以,制定一份合理的数据库维护计划,不要等日志文件或者log文件越长越大的时候才去整理数据库。还有很多很多要注意的东西,。。。。。。
1、使你的数据库结构规范化,但是不要求一定达到第三范式,为了显示和打印目的可以有数据冗余2、评估你的系统中对性能影响的关键处,减少被频繁访问的核心表的数量,并在这些核心表上重点优化索引,表结构(尽量紧凑)。典型的核心表是代码表。3、对于统计类应用,如果可能应写成触发器和存储过程,这样就有可能把一个消耗大量时间的统计运算分布到每insert,delete,或者update来处理,从而极大提高查询类操作的速度。查询选择群居索引最有效。其他索引也要针对业务进行选择。由于维护索引也要消耗系统资源和时间,所以过多的索引对性能是损害甚至是毫无效果的。5、如果可能,可以利用大数据库对sql的一些特殊规定来进一步优化,比如查询暗示。6、适当选择硬件,综合考虑cpu,内存,i/o系统的性能,以当前的cpu,内存配置来看,很多数据库系统的瓶颈出在i/o系统上。所以如果有可能,最好使用raid。当然如果你有足够的财力,可以买更好的服务器,或者搞服务器集群就更利害啦。7、可能的话,尽量使用存储过程,因为存储过程的执行计划可以重复使用,而且不需要象普通由client提交的sql那样进行处理和编译。8、检查你的应用程序设计,如果有可能,尽量减少查询次数和在网络上往返的数据。为了获取少量字段而写select * 对性能的损害也比较利害。9、在应用程序中协调并发和一致性之间的矛盾。并不是所有业务都需要放在事务中。大量业务是允许脏读的,在不关键事务中使用脏读,或者读提交,可以大大降低deadlock和进程之间彼此等待的机会,从而把由于互相锁定资源引起的等待降低到最小。不要在事务执行中进行大量计算或者与用户交互的操作,因为事务的执行在要求上是不允许被打断的原子操作(回滚是失败的),所以事务应该多而短小。长事务会锁住很多资源比较长的时间,因此也比较容易导致其他进程对资源的等待和死锁的机会。10、评估你开发系统的关键业务,在很多数据库系统对性能的要求是彼此矛盾的,比如oltp应用和dss是不同的。dss倾向于使用各种索引加快检索速度,而大量的索引对oltp则是负担。11、不要在应用程序中写怪异的sql 查询,比如 where money!40000,这样的语句,这种sql查询,数据库的sql优化器是无法进行优化的。12、定期维护和管理你的数据库系统,压缩掉那些垃圾空间,很多数据库系统执行类似删除,事务等操作的时候,并不回收无用的物理空间。所以,制定一份合理的数据库维护计划,不要等日志文件或者log文件越长越大的时候才去整理数据库。还有很多很多要注意的东西,。。。。。。

怎样设计高性能的数据库

3,如何设计合理高效的数据库

一、 引言数据库对于企业信息化的重要性是不言而喻的。数据库存储着现代企业最重要的数据,包括生产、经营、管理等各类数据,这些数据作为企业的核心信息,通过各类信息系统,为用户提供及时准确的信息,帮助用户分析,为用户提供决策依据。为提高企业的工作效率,提升企业形象,具有传统模式无法比拟的优势。其中构建合理高效的数据库,是数据库建设关键之一。如何构建合理高效的数据库是企业信息化过程要解决的问题。下面就数据库的构建谈谈自己的一些经验,希望能对大家有所帮助。 二、 设计数据库之前数据库并不是凭空想象出来的,而是根据业务部门的需要设计符合业务需求的数据库。因此在形成数据库之前需要充分了解业务需求。 1. 充分理解业务需求。需求分析是整个设计过程的基础,是最困难、最耗费时间的一步。在这期间通过与业务部门交流,了解用户的想法以及工作流程,通过双方多次交流,会形成初步的数据模型,当然这时的数据模型不会是最终的模型,还需要和用户进行交流,并且在以后的信息系统开发过程中还会反复修改。 2. 重视输入输出。在定义数据库表和字段需求(输入)时,首先应了解数据产生源和数据流程,也就是必需要知道每个数据在那儿产生,数据在那儿表现,以什么样的形式表现等等,然后根据用户提供的报表或者设计出的报表、查询和视图(输出)以决定为了支持这些输出哪些是必要的表和字段。 3. 创建数据字典和ER 图表。ER 图表和数据字典可以让任何了解数据库的人都明确如何从数据库中获得数据。ER图对表明表之间关系很有用,而数据字典则说明了每个字段的用途以及任何可能存在的别名。对SQL 表达式的文档化来说这是完全必要的。 需要注意的是,在需求分析调研过程中,并不是一帆风顺的,因为业务人员对于业务的理解不同,以及对于信息知识的缺乏,会影响需求分析的质量,为了提高质量,各方要用更多的时间交流与相互理解,业务部门需要精通业务的人员自始至终全力配合,而开发人员则尽量使用用户理解的业务术语交流,这样会避免出现理解不同而产生的歧义。 三、 设计合理的表结构通常合理的表结构会减少数据冗余,提高数据库的性能。设计合理的表结构要遵循以下两点。 1. 标准化和规范化 数据的标准化有助于消除数据库中的数据冗余。标准化有好几种形式,但3NF(第三范式)通常被认为在性能、扩展性和数据完整性方面达到了最好平衡。简单来说,遵守3NF标准的数据库的表设计原则是:某个表只包括其本身基本的属性,当不是它们本身所具有的属性时需进行分解。表之间的关系通过外键相连接。它具有以下特点:有一组表专门存放通过键连接起来的关联数据。 例如:某个存放单井信息及其有关油井生产日报信息的3NF数据库就有两个表:单井基础信息和油井日报信息。日报信息不包含单井的任何信息,但表内会存放一个键值,该键指向单井基础信息里包含该油井信息的那一行。 不过也有例外,有时为了效率的缘故,对表不进行标准化也是必要的。 2. 考虑各种变化 在设计数据库的时候考虑到哪些数据字段将来可能会发生变更。使数据库更具扩展性,从而减少将来数据变更所带来的损失。 例如,日期类型字段,有时我们会考虑使用字符类型代替日期类型,因为在处理日期字段上容易产生数据错误,所以我们就使用字符类型。这样的例子还很多,在做前期设计时都要考虑的。 表结构的设计不是一次就能成功的,在信息系统开发过程中会存在数据读取、录入或统计困难,为了解决这些问题会修改表结构,或增加一些字段,或修改一些字段的属性。这个过程不断重复,因此不要想一次能成功。建议使用专门设计工具来做这些工作,笔者经常使用:SYBASE PowerDesigner ,当然还有其它的工具:ORACLE Designer 2000 ,ROSE等工具。这样会使你的工作事半功倍。 四、 选择合理的索引索引是从数据库中获取数据的最高效方式之一。95%的数据库性能问题都可以采用索引技术得到解决。 1. 逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。 2. 大多数数据库都索引自动创建的主键字段,但是可别忘了索引外键,它们也是经常使用的键,比如运行查询显示主表和所有关联表的某条记录就用得上。 3. 不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。如MEMO(备注)、TEXT(文本)等字段。 4. 不要索引常用的小型表 不要为小型数据表设置任何键,假如它们经常有插入和删除操作就更别这样作了。对这些插入和删除操作的索引维护可能比扫描表空间消耗更多的时间。如代码表,或系统参数表。 五、 保证数据完整性数据的完整性非常重要,这关系到数据的准确性,不准确的数据是毫无价值的,因此保证数据的完整性非常重要。 1. 完整性实现机制:实体完整性:主键参照完整性: 父表中删除数据:级联删除;受限删除;置空值父表中插入数据:受限插入;递归插入 父表中更新数据:级联更新;受限更新;置空值 DBMS对参照完整性可以有两种方法实现:外键实现机制(约束规则)和触发器实现机制用户定义完整性:NOT NULL;CHECK;触发器 以上完整性机制需要熟悉和掌握,它对于数据的完整性非常重要。 2. 用约束而非业务规则强制数据完整性 采用数据库系统实现数据的完整性。这不但包括通过标准化实现的完整性而且还包括数据的功能性。在写数据的时候还可以增加触发器来保证数据的正确性。不要依赖于业务层保证数据完整性;它不能保证表之间(外键)的完整性所以不能强加于其他完整性规则之上。 3. 强制指示完整性 在有害数据进入数据库之前将其剔除。激活数据库系统的指示完整性特性。这样可以保持数据的清洁而能迫使开发人员投入更多的时间处理错误条件。 4. 使用查找控制数据完整性 控制数据完整性的最佳方式就是限制用户的录入。只要有可能都应该提供给用户一个清晰的价值列表供其选择。这样将减少键入代码的错误和误解同时提供数据的一致性。某些公共数据特别适合查找:性别代码、单位代码等。 5. 采用视图 视图是一个虚拟表,其内容由SQL语句定义,视图不仅可以简化用户对数据的理解,也可以简化他们的操作。那些被经常使用的查询可以被定义为视图,从而使得用户不必为以后的操作每次指定全部的条件。另外通过视图用户只能查询和修改他们所能见到的数据。数据库中的其它数据则既看不见也取不到。数据库授权命令可以使每个用户对数据库的检索限制到特定的数据库对象上,增强数据的安全性。 六、 结束语数据库的高效运行不仅需要技术上的支持,也需要硬件平台和网络的支持以及数据库管理员的有效管理,本文只是从技术的角度说明如何提高数据库的效率,但在实际应用过程中其它方面的支持也是不可缺少的,尤其是数据库管理,数据库建设是“三分技术,七分管理,十二分基础数据”,因此对于数据库管理一定要重视,在管理到位的情况下技术才能发挥应有的作用。

如何设计合理高效的数据库

4,数据库设计技巧是什么

数据库设计包括应用与设计,重在设计。而数据库技术仅是应用,重在应用。就难度而言,其实三级并不比二级难多少。
(需求分析阶段)1) 理解客户需求,询问用户如何看待未来需求变化。让客户解释其需求,而且随着开发的继续,还要经常询问客户保证其需求仍然在开发的目的之中。2) 了解企业业务可以在以后的开发阶段节约大量的时间。3) 重视输入输出。在定义数据库表和字段需求(输入)时,首先应检查现有的或者已经设计出的报表、查询和视图(输出)以决定为了支持这些输出哪些是必要的表和字段。举例:假如客户需要一个报表按照邮政编码排序、分段和求和,你要保证其中包括了单独的邮政编码字段而不要把邮政编码糅进地址字段里。4) 创建数据字典和er 图表er 图表和数据字典可以让任何了解数据库的人都明确如何从数据库中获得数据。er图对表明表之间关系很有用,而数据字典则说明了每个字段的用途以及任何可能存在的别名。对sql表达式的文档化来说这是完全必要的。5) 定义标准的对象命名规范数据库各种对象的命名必须规范。 (数据库逻辑设计)表设计原则1) 标准化和规范化数据的标准化有助于消除数据库中的数据冗余。标准化有好几种形式,但third normal form(3nf)通常被认为在性能、扩展性和数据完整性方面达到了最好平衡。简单来说,遵守3nf 标准的数据库的表设计原则是:“one fact in one place”即某个表只包括其本身基本的属性,当不是它们本身所具有的属性时需进行分解。表之间的关系通过外键相连接。它具有以下特点:有一组表专门存放通过键连接起来的关联数据。举例:某个存放客户及其有关定单的3nf数据库就可能有两个表:customer 和order。order 表不包含定单关联客户的任何信息,但表内会存放一个键值,该键指向customer 表里包含该客户信息的那一行。事实上,为了效率的缘故,对表不进行标准化有时也是必要的。2) 数据驱动采用数据驱动而非硬编码的方式,许多策略变更和维护都会方便得多,大大增强系统的灵活性和扩展性。举例,假如用户界面要访问外部数据源(文件、xml 文档、其他数据库等),不妨把相应的连接和路径信息存储在用户界面支持表里。还有,如果用户界面执行工作流之类的任务(发送邮件、打印信笺、修改记录状态等),那么产生工作流的数据也可以存放在数据库里。角色权限管理也可以通过数据驱动来完成。事实上,如果过程是数据驱动的,你就可以把相当大的责任推给用户,由用户来维护自己的工作流过程。3) 考虑各种变化在设计数据库的时候考虑到哪些数据字段将来可能会发生变更。举例,姓氏就是如此(注意是西方人的姓氏,比如女性结婚后从夫姓等)。所以,在建立系统存储客户信息时,在单独的一个数据表里存储姓氏字段,而且还附加起始日和终止日等字段,这样就可以跟踪这一数据条目的变化。4) 每个表中都应该添加的3 个有用的字段drecordcreationdate,在vb 下默认是now(),而在sql server  · 下默认为getdate()srecordcreator,在sql server 下默认为not null default  · usernrecordversion,记录的版本标记;有助于准确说明记录中出现null 数据或者丢失数据的原因  ·5) 对地址和电话采用多个字段描述街道地址就短短一行记录是不够的。 address_line1、address_line2 和address_line3 可以提供更大的灵活性。还有,电话号码和邮件地址最好拥有自己的数据表,其间具有自身的类型和标记类别。6) 使用角色实体定义属于某类别的列在需要对属于特定类别或者具有特定角色的事物做定义时,可以用角色实体来创建特定的时间关联关系,从而可以实现自我文档化。举例:用person 实体和person_type 实体来描述人员。比方说,当john smith, engineer 提升为john smith, director 乃至最后爬到john smith, cio 的高位,而所有你要做的不过是改变两个表person 和person_type 之间关系的键值,同时增加一个日期/时间字段来知道变化是何时发生的。这样,你的person_type 表就包含了所有person 的可能类型,比如associate、engineer、director、cio 或者ceo 等。还有个替代办法就是改变person 记录来反映新头衔的变化,不过这样一来在时间上无法跟踪个人所处位置的具体时间。7) 选择数字类型和文本类型尽量充足在sql 中使用smallint 和tinyint 类型要特别小心。比如,假如想看看月销售总额,总额字段类型是smallint,那么,如果总额超过了$32,767 就不能进行计算操作了。而id 类型的文本字段,比如客户id 或定单号等等都应该设置得比一般想象更大。假设客户id 为10 位数长。那你应该把数据库表字段的长度设为12 或者13 个字符长。但这额外占据的空间却无需将来重构整个数据库就可以实现数据库规模的增长了。8) 增加删除标记字段在表中包含一个“删除标记”字段,这样就可以把行标记为删除。在关系数据库里不要单独删除某一行;最好采用清除数据程序而且要仔细维护索引整体性。 (数据库逻辑设计)键选择原则:1) 键设计4 原则为关联字段创建外键。所有的键都必须唯一。避免使用复合键。外键总是关联唯一的键字段。2) 使用系统生成的主键设计数据库的时候采用系统生成的键作为主键,那么实际控制了数据库的索引完整性。这样,数据库和非人工机制就有效地控制了对存储数据中每一行的访问。采用系统生成键作为主键还有一个优点:当拥有一致的键结构时,(不让主键具有可更新性)在确定采用什么字段作为表的键的时候,可一定要小心用户将要编辑的字段。通常的情况下不要选择用户可编辑的字段作为键。4) 可选键有时可做主键把可选键进一步用做主键,可以拥有建立强大索引的能力。索引使用原则:索引是从数据库中获取数据的最高效方式之一。95%的数据库性能问题都可以采用索引技术得到解决。1) 逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。2) 大多数数据库都索引自动创建的主键字段,但是可别忘了索引外键,它们也是经常使用的键,比如运行查询显示主表和所有关联表的某条记录就用得上。3) 不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。4) 不要索引常用的小型表不要为小型数据表设置任何键,假如它们经常有插入和删除操作就更别这样作了。对这些插入和删除操作的索引维护可能比扫描表空间消耗更多的时间。 (数据库逻辑设计)1) 完整性实现机制:实体完整性:主键参照完整性:父表中删除数据:级联删除;受限删除;置空值父表中插入数据:受限插入;递归插入父表中更新数据:级联更新;受限更新;置空值dbms对参照完整性可以有两种方法实现:外键实现机制(约束规则)和触发器实现机制用户定义完整性:not null;check;触发器2) 用约束而非商务规则强制数据完整性采用数据库系统实现数据的完整性。这不但包括通过标准化实现的完整性而且还包括数据的功能性。在写数据的时候还可以增加触发器来保证数据的正确性。不要依赖于商务层保证数据完整性;它不能保证表之间(外键)的完整性所以不能强加于其他完整性规则之上。3) 强制指示完整性在有害数据进入数据库之前将其剔除。激活数据库系统的指示完整性特性。这样可以保持数据的清洁而能迫使开发人员投入更多的时间处理错误条件。4) 使用查找控制数据完整性控制数据完整性的最佳方式就是限制用户的选择。只要有可能都应该提供给用户一个清晰的价值列表供其选择。这样将减少键入代码的错误和误解同时提供数据的一致性。某些公共数据特别适合查找:国家代码、状态代码等。5) 采用视图为了在数据库和应用程序代码之间提供另一层抽象,可以为应用程序建立专门的视图而不必非要应用程序直接访问数据表。这样做还等于在处理数据库变更时给你提供了更多的自由。 1) 避免使用触发器触发器的功能通常可以用其他方式实现。在调试程序时触发器可能成为干扰。假如你确实需要采用触发器,你最好集中对它文档化。2) 使用常用英语(或者其他任何语言)而不要使用编码在创建下拉菜单、列表、报表时最好按照英语名排序。假如需要编码,可以在编码旁附上用户知道的英语。3) 保存常用信息让一个表专门存放一般数据库信息非常有用。在这个表里存放数据库当前版本、检查/修复(对 access)、关联设计文档的名称、客户等信息。这样可以实现一种简单机制跟踪数据库,当客户抱怨他们的数据库没有达到希望的要求而与你联系时,这样做对非客户机/服务器环境特别有用。4) 包含版本机制在数据库中引入版本控制机制来确定使用中的数据库的版本。时间一长,用户的需求总是会改变的。最终可能会要求修改数据库结构。把版本信息直接存放到数据库中更为方便。5) 编制文档采用给表、列、触发器等加注释的数据库工具。对开发、支持和跟踪修改非常有用。对数据库文档化,或者在数据库自身的内部或者单独建立文档。这样,当过了一年多时间后再回过头来做第2 个版本,犯错的机会将大大减少。6) 测试、测试、反复测试建立或者修订数据库之后,必须用用户新输入的数据测试数据字段。最重要的是,让用户进行测试并且同用户一道保证选择的数据类型满足商业要求。测试需要在把新数据库投入实际服务之前完成。7) 检查设计在开发期间检查数据库设计的常用技术是通过其所支持的应用程序原型检查数据库。换句话说,针对每一种最终表达数据的原型应用,保证你检查了数据模型并且查看如何取出数据。

5,怎样设计一个好的数据库

数据库设计(Database Design)是指对于一个给定的应用环境,构造最优的数据库模式,建立数据库及其应用系统,使之能够有效地存储数据,满足各种用户的应用需求(信息要求和处理要求)。在数据库领域内,常常把使用数据库的各类系统统称为数据库应用系统。一、数据库和信息系统(1)数据库是信息系统的核心和基础,把信息系统中大量的数据按一定的模型组织起来,提供存储、维护、检索数据的功能,使信息系统可以方便、及时、准确地从数据库中获得所需的信息。(2)数据库是信息系统的各个部分能否紧密地结合在一起以及如何结合的关键所在。(3)数据库设计是信息系统开发和建设的重要组成部分。(4)数据库设计人员应该具备的技术和知识:数据库的基本知识和数据库设计技术计算机科学的基础知识和程序设计的方法和技巧软件工程的原理和方法应用领域的知识二、数据库设计的特点 数据库建设是硬件、软件和干件的结合三分技术,七分管理,十二分基础数据技术与管理的界面称之为“干件”数据库设计应该与应用系统设计相结合结构(数据)设计:设计数据库框架或数据库结构行为(处理)设计:设计应用程序、事务处理等结构和行为分离的设计传统的软件工程忽视对应用中数据语义的分析和抽象,只要有可能就尽量推迟数据结构设计的决策早期的数据库设计致力于数据模型和建模方法研究,忽视了对行为的设计如图:三、数据库设计方法简述 手工试凑法设计质量与设计人员的经验和水平有直接关系缺乏科学理论和工程方法的支持,工程的质量难以保证数据库运行一段时间后常常又不同程度地发现各种问题,增加了维护代价规范设计法手工设计方基本思想过程迭代和逐步求精规范设计法(续)典型方法:(1)新奥尔良(New Orleans)方法:将数据库设计分为四个阶段S.B.Yao方法:将数据库设计分为五个步骤I.R.Palmer方法:把数据库设计当成一步接一步的过程(2)计算机辅助设计ORACLE Designer 2000SYBASE PowerDesigner四、数据库设计的基本步骤数据库设计的过程(六个阶段) 1.需求分析阶段准确了解与分析用户需求(包括数据与处理)是整个设计过程的基础,是最困难、最耗费时间的一步2.概念结构设计阶段是整个数据库设计的关键通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型3.逻辑结构设计阶段将概念结构转换为某个DBMS所支持的数据模型对其进行优化4.数据库物理设计阶段为逻辑数据模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)5.数据库实施阶段运用DBMS提供的数据语言、工具及宿主语言,根据逻辑设计和物理设计的结果建立数据库,编制与调试应用程序,组织数据入库,并进行试运行6.数据库运行和维护阶段数据库应用系统经过试运行后即可投入正式运行。在数据库系统运行过程中必须不断地对其进行评价、调整与修改设计特点:在设计过程中把数据库的设计和对数据库中数据处理的设计紧密结合起来将这两个方面的需求分析、抽象、设计、实现在各个阶段同时进行,相互参照,相互补充,以完善两方面的设计设计过程各个阶段的设计描述:如图:五、数据库各级模式的形成过程1.需求分析阶段:综合各个用户的应用需求2.概念设计阶段:形成独立于机器特点,独立于各个DBMS产品的概念模式(E-R图)3.逻辑设计阶段:首先将E-R图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式;然后根据用户处理的要求、安全性的考虑,在基本表的基础上再建立必要的视图(View),形成数据的外模式4.物理设计阶段:根据DBMS特点和处理的需要,进行物理存储安排,建立索引,形成数据库内模式 六、数据库设计技巧1. 设计数据库之前(需求分析阶段)1) 理解客户需求,询问用户如何看待未来需求变化。让客户解释其需求,而且随着开发的继续,还要经常询问客户保证其需求仍然在开发的目的之中。2) 了解企业业务可以在以后的开发阶段节约大量的时间。3) 重视输入输出。在定义数据库表和字段需求(输入)时,首先应检查现有的或者已经设计出的报表、查询和视图(输出)以决定为了支持这些输出哪些是必要的表和字段。举例:假如客户需要一个报表按照邮政编码排序、分段和求和,你要保证其中包括了单独的邮政编码字段而不要把邮政编码糅进地址字段里。4) 创建数据字典和ER 图表ER 图表和数据字典可以让任何了解数据库的人都明确如何从数据库中获得数据。ER图对表明表之间关系很有用,而数据字典则说明了每个字段的用途以及任何可能存在的别名。对SQL 表达式的文档化来说这是完全必要的。5) 定义标准的对象命名规范数据库各种对象的命名必须规范。2. 表和字段的设计(数据库逻辑设计)表设计原则1) 标准化和规范化数据的标准化有助于消除数据库中的数据冗余。标准化有好几种形式,但Third Normal Form(3NF)通常被认为在性能、扩展性和数据完整性方面达到了最好平衡。简单来说,遵守3NF 标准的数据库的表设计原则是:“One Fact in One Place”即某个表只包括其本身基本的属性,当不是它们本身所具有的属性时需进行分解。表之间的关系通过外键相连接。它具有以下特点:有一组表专门存放通过键连接起来的关联数据。举例:某个存放客户及其有关定单的3NF 数据库就可能有两个表:Customer 和Order。Order 表不包含定单关联客户的任何信息,但表内会存放一个键值,该键指向Customer 表里包含该客户信息的那一行。事实上,为了效率的缘故,对表不进行标准化有时也是必要的。2) 数据驱动采用数据驱动而非硬编码的方式,许多策略变更和维护都会方便得多,大大增强系统的灵活性和扩展性。举例,假如用户界面要访问外部数据源(文件、XML 文档、其他数据库等),不妨把相应的连接和路径信息存储在用户界面支持表里。还有,如果用户界面执行工作流之类的任务(发送邮件、打印信笺、修改记录状态等),那么产生工作流的数据也可以存放在数据库里。角色权限管理也可以通过数据驱动来完成。事实上,如果过程是数据驱动的,你就可以把相当大的责任推给用户,由用户来维护自己的工作流过程。3) 考虑各种变化在设计数据库的时候考虑到哪些数据字段将来可能会发生变更。举例,姓氏就是如此(注意是西方人的姓氏,比如女性结婚后从夫姓等)。所以,在建立系统存储客户信息时,在单独的一个数据表里存储姓氏字段,而且还附加起始日和终止日等字段,这样就可以跟踪这一数据条目的变化。字段设计原则4) 每个表中都应该添加的3 个有用的字段dRecordCreationDate,在VB 下默认是Now(),而在SQL Server ? 下默认为GETDATE()sRecordCreator,在SQL Server 下默认为NOT NULL DEFAULT ? USERnRecordVersion,记录的版本标记;有助于准确说明记录中出现null 数据或者丢失数据的原因 ?5) 对地址和电话采用多个字段描述街道地址就短短一行记录是不够的。Address_Line1、Address_Line2 和Address_Line3 可以提供更大的灵活性。还有,电话号码和邮件地址最好拥有自己的数据表,其间具有自身的类型和标记类别。6) 使用角色实体定义属于某类别的列在需要对属于特定类别或者具有特定角色的事物做定义时,可以用角色实体来创建特定的时间关联关系,从而可以实现自我文档化。举例:用PERSON 实体和PERSON_TYPE 实体来描述人员。比方说,当John Smith, Engineer 提升为John Smith, Director 乃至最后爬到John Smith, CIO 的高位,而所有你要做的不过是改变两个表PERSON 和PERSON_TYPE 之间关系的键值,同时增加一个日期/时间字段来知道变化是何时发生的。这样,你的PERSON_TYPE 表就包含了所有PERSON 的可能类型,比如Associate、Engineer、Director、CIO 或者CEO 等。还有个替代办法就是改变PERSON 记录来反映新头衔的变化,不过这样一来在时间上无法跟踪个人所处位置的具体时间。7) 选择数字类型和文本类型尽量充足在SQL 中使用smallint 和tinyint 类型要特别小心。比如,假如想看看月销售总额,总额字段类型是smallint,那么,如果总额超过了$32,767 就不能进行计算操作了。而ID 类型的文本字段,比如客户ID 或定单号等等都应该设置得比一般想象更大。假设客户ID 为10 位数长。那你应该把数据库表字段的长度设为12 或者13 个字符长。但这额外占据的空间却无需将来重构整个数据库就可以实现数据库规模的增长了。8) 增加删除标记字段在表中包含一个“删除标记”字段,这样就可以把行标记为删除。在关系数据库里不要单独删除某一行;最好采用清除数据程序而且要仔细维护索引整体性。 3. 选择键和索引(数据库逻辑设计)键选择原则:1) 键设计4 原则为关联字段创建外键。 ?所有的键都必须唯一。 ?避免使用复合键。 ?外键总是关联唯一的键字段。 ?2) 使用系统生成的主键设计数据库的时候采用系统生成的键作为主键,那么实际控制了数据库的索引完整性。这样,数据库和非人工机制就有效地控制了对存储数据中每一行的访问。采用系统生成键作为主键还有一个优点:当拥有一致的键结构时,找到逻辑缺陷很容易。3) 不要用用户的键(不让主键具有可更新性)在确定采用什么字段作为表的键的时候,可一定要小心用户将要编辑的字段。通常的情况下不要选择用户可编辑的字段作为键。4) 可选键有时可做主键把可选键进一步用做主键,可以拥有建立强大索引的能力。索引使用原则:索引是从数据库中获取数据的最高效方式之一。95%的数据库性能问题都可以采用索引技术得到解决。1) 逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。2) 大多数数据库都索引自动创建的主键字段,但是可别忘了索引外键,它们也是经常使用的键,比如运行查询显示主表和所有关联表的某条记录就用得上。3) 不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。4) 不要索引常用的小型表不要为小型数据表设置任何键,假如它们经常有插入和删除操作就更别这样作了。对这些插入和删除操作的索引维护可能比扫描表空间消耗更多的时间。4. 数据完整性设计(数据库逻辑设计)1) 完整性实现机制:实体完整性:主键参照完整性:父表中删除数据:级联删除;受限删除;置空值父表中插入数据:受限插入;递归插入父表中更新数据:级联更新;受限更新;置空值DBMS对参照完整性可以有两种方法实现:外键实现机制(约束规则)和触发器实现机制用户定义完整性:NOT NULL;CHECK;触发器2) 用约束而非商务规则强制数据完整性采用数据库系统实现数据的完整性。这不但包括通过标准化实现的完整性而且还包括数据的功能性。在写数据的时候还可以增加触发器来保证数据的正确性。不要依赖于商务层保证数据完整性;它不能保证表之间(外键)的完整性所以不能强加于其他完整性规则之上。3) 强制指示完整性在有害数据进入数据库之前将其剔除。激活数据库系统的指示完整性特性。这样可以保持数据的清洁而能迫使开发人员投入更多的时间处理错误条件。4) 使用查找控制数据完整性控制数据完整性的最佳方式就是限制用户的选择。只要有可能都应该提供给用户一个清晰的价值列表供其选择。这样将减少键入代码的错误和误解同时提供数据的一致性。某些公共数据特别适合查找:国家代码、状态代码等。5) 采用视图为了在数据库和应用程序代码之间提供另一层抽象,可以为应用程序建立专门的视图而不必非要应用程序直接访问数据表。这样做还等于在处理数据库变更时给你提供了更多的自由。5. 其他设计技巧1) 避免使用触发器触发器的功能通常可以用其他方式实现。在调试程序时触发器可能成为干扰。假如你确实需要采用触发器,你最好集中对它文档化。2) 使用常用英语(或者其他任何语言)而不要使用编码在创建下拉菜单、列表、报表时最好按照英语名排序。假如需要编码,可以在编码旁附上用户知道的英语。3) 保存常用信息让一个表专门存放一般数据库信息非常有用。在这个表里存放数据库当前版本、最近检查/修复(对Access)、关联设计文档的名称、客户等信息。这样可以实现一种简单机制跟踪数据库,当客户抱怨他们的数据库没有达到希望的要求而与你联系时,这样做对非客户机/服务器环境特别有用。4) 包含版本机制在数据库中引入版本控制机制来确定使用中的数据库的版本。时间一长,用户的需求总是会改变的。最终可能会要求修改数据库结构。把版本信息直接存放到数据库中更为方便。 5) 编制文档对所有的快捷方式、命名规范、限制和函数都要编制文档。采用给表、列、触发器等加注释的数据库工具。对开发、支持和跟踪修改非常有用。对数据库文档化,或者在数据库自身的内部或者单独建立文档。这样,当过了一年多时间后再回过头来做第2 个版本,犯错的机会将大大减少。6) 测试、测试、反复测试建立或者修订数据库之后,必须用用户新输入的数据测试数据字段。最重要的是,让用户进行测试并且同用户一道保证选择的数据类型满足商业要求。测试需要在把新数据库投入实际服务之前完成。7) 检查设计在开发期间检查数据库设计的常用技术是通过其所支持的应用程序原型检查数据库。换句话说,针对每一种最终表达数据的原型应用,保证你检查了数据模型并且查看如何取出数据。

文章TAG:数据  数据库  设计  哪些  数据库设计有哪些技巧  
下一篇