算p值需要哪些数据库,用spss170如何计算两组数据的P值
来源:整理 编辑:黑码技术 2024-05-27 10:25:10
1,用spss170如何计算两组数据的P值
1、打开相关软件,输入要求的两组数据。2、随便选择一个空白表格,并点击函数fx。3、在选择类别为统计以后,确定函数为TTEST。4、分别点击第一组和第二组数值并选中第一组和第二组方框数据,注意尾数和类型都输入2。5、通过确定第四步的操作,即可用spss17.0计算两组数据的P值了。用“fisher 的精确检验 .310 1.000 ”里的双侧,0.310
2,求助大神用SPSS软件计算P值和X2值急等
痰培养的卡方和P分别为1.286和0.257痰真菌0.010和0.919最后一个是1.253和0.263统计专业研究生工作室为您服务卡方检验你的数据应该用交叉列联表做,数据录入格式为:建立两个变量,变量1是组别,正常对照组用数据1表示,病例组用数据2表示;变量2是疗效等分类变量,用1表示分类属性1,用2表示分类属性2,还有一个变量3是权重,例数数据录入完成后,先加权频数后点analyze-descriptive statistics-crosstabs-把变量1选到rows里,把变量2选到column里,然后点击下面的statistics,打开对话框,勾选chi-squares,然后点continue,再点ok,出来结果的第3个表就是你要的卡方检验,第一行第一个数是卡方值,后面是自由度,然后是p值。
3,统计学中P值的计算
统计学意义(p值)ZT
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。
在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。
4,SPSS软件如何计算p值这个软件弄得我头都大了
S P S S 软件介绍一、概况:SPSS是软件英文名称的首字母缩写,原意为Statistical Package for the Social Sciences,即“社会科学统计软件包”。但是随着SPSS产品服务领域的扩大和服务深度的增加,SPSS公司已于2000年正式将英文全称更改为 Statistical Product and Service Solutions,意为“统计产品与服务解决方案”,标志着SPSS的战略方向正在做出重大调整。SPSS现在的最新版本为11.03,大小约为200M。他是世界上最早的统计分析软件,由美国斯坦福大学的三位研究生于20世纪60年代末研制,同时成立了SPSS公司,并于1975年在芝加哥组建了SPSS总部。1984年SPSS总部首先推出了世界上第一个统计分析软件微机版本SPSS/PC+,开创了SPSS微机系列产品的开发方向,极大地扩充了它的应用范围,并使其能很快地应用于自然科学、技术科学、社会科学的各个领域,世界上许多有影响的报刊杂志纷纷就SPSS的自动统计绘图、数据的深入分析、使用方便、功能齐全等方面给予了高度的评价与称赞。迄今SPSS软件已有30余年的成长历史。全球约有25万家产品用户,它们分布于通讯、医疗、银行、证券、保险、制造、商业、市场研究、科研教育等多个领域和行业,是世界上应用最广泛的专业统计软件。在国际学术界有条不成文的规定,即在国际学术交流中,凡是用SPSS软件完成的计算和统计分析,可以不必说明算法,由此可见其影响之大和信誉之高。1994至1998年间,SPSS公司陆续购并了SYSTAT公司、BMDP软件公司、Quantime公司、ISL公司等,并将各公司的主打产品收纳SPSS旗下,从而使SPSS公司由原来的单一统计产品开发与销售转向企业、教育科研及政府机构提供全面信息统计决策支持服务,成为走在了最新流行的“数据仓库”和“数据挖掘”领域前沿的一家综合统计软件公司。和SAS相同,SPSS也由多个模块构成,在最新的11版中,SPSS一共由十个模块组成,其中SPSS Base为基本模块,其余九个模块为Advanced Models、Regression Models、Tables、Trends、Categories、Conjoint、Exact Tests、Missing Value Analysis和Maps,分别用于完成某一方面的统计分析功能,他们均需要挂接在Base上运行。除此之外,SPSS 11完全版还包括SPSS Smart Viewer和SPSS Report Writer两个软件,他们并未整合进来,但功能上完全是SPSS的辅助软件。SPSS最突出的特点就是操作界面极为友好,输出结果美观漂亮(从国外的角度看),他使用Windows的窗口方式展示各种管理和分析数据方法的功能,使用对话框展示出各种功能选择项,只要掌握一定的Windows操作技能,粗通统计分析原理,就可以使用该软件为特定的科研工作服务。是非专业统计人员的首选统计软件。在众多用户对国际常用统计软件SAS、BMDP、GLIM、GENSTAT、EPILOG、MiniTab的总体印象分的统计中,其诸项功能均获得最高分。SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口,用户只需在菜单中选好各个选项,然后按“粘贴”按钮就可以自动生成标准的SPSS程序。极大的方便了中、高级用户。二、操作方式:SPSS是世界上最早采用图形菜单驱动界面的统计软件,他最突出的特点就是操作界面极为友好,输出结果美观漂亮。他将几乎所有的功能都以统一、规范的界面展现出来,使用Windows的窗口方式展示各种管理和分析数据方法的功能,对话框展示出各种功能选择项。用户只要掌握一定的Windows操作技能,粗通统计分析原理,就可以使用该软件为特定的科研工作服务。是非专业统计人员的首选统计软件。在众多用户对国际常用统计软件SAS、BMDP、 GLIM、GENSTAT、EPILOG、MiniTab的总体印象分的统计中,其诸项功能均获得最高分。 SPSS采用类似EXCEL表格的方式输入与管理数据,数据接口较为通用,能方便的从其他数据库中读入数据。其统计过程包括了常用的、较为成熟的统计过程,完全可以满足非统计专业人士的工作需要。输出结果十分美观,存储时则是专用的SPO格式,可以转存为HTML格式和文本格式。对于熟悉老版本编程运行方式的用户,SPSS还特别设计了语法生成窗口,用户只需在菜单中选好各个选项,然后按“粘贴”按钮就可以自动生成标准的SPSS程序。极大的方便了中、高级用户。三、缺点:由于在SPSS公司的产品线中,SPSS软件属于中、低档(SPSS公司共有二十余个产品),因此从战略的观点来看,SPSS显然是把相当的精力放在了用户界面的开发上。该软件只吸收较为成熟的统计方法,而对于最新的统计方法,SPSS公司的做法是为之发展一些专门软件,如针对树结构模型的 Answer Tree,针对神经网络技术的Neural Connection、专门用于数据挖掘的Clementine等,而不是直接纳入SPSS,因此他们在SPSS中均难觅芳踪。另外,其输出结果虽然漂亮,但不能为WORD等常用文字处理软件直接打开,只能采用拷贝、粘贴的方式加以交互。这些都可以说是SPSS软件的致命伤。参考资料:http://www.qstat.net/Qstat/spss_intro.htmspss和比赛没关系的spss是数据分析软件我替别人做这类的数据分析蛮多的
5,统计P值是什么怎么算
P值(P value)就是当原假设为真时所得到的样本观察结果或更极端结果出现的概率。如果P值很小,说明原假设情况的发生的概率很小,而如果出现了,根据小概率原理,我们就有理由拒绝原假设,P值越小,我们拒绝原假设的理由越充分。总之,P值越小,表明结果越显著。但是检验的结果究竟是“显著的”、“中度显著的”还是“高度显著的”需要我们自己根据P值的大小和实际问题来解决。计算:为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。 1、左侧检验P值是当时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值2、右侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值3、双侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值扩展资料美国统计协会公布了P值使用的几大准则:准则1:P值可以表达的是数据与一个给定模型不匹配的程度这条准则的意思是说,我们通常会设立一个假设的模型,称为“原假设”,然后在这个模型下观察数据在多大程度上与原假设背道而驰。P值越小,说明数据与模型之间越不匹配。准则2:P值并不能衡量某条假设为真的概率,或是数据仅由随机因素产生的概率。这条准则表明,尽管研究者们在很多情况下都希望计算出某假设为真的概率,但P值的作用并不是这个。P值只解释数据与假设之间的关系,它并不解释假设本身。准则3:科学结论、商业决策或政策制定不应该仅依赖于P值是否超过一个给定的阈值。这一条给出了对决策制定的建议:成功的决策取决于很多方面,包括实验的设计,测量的质量,外部的信息和证据,假设的合理性等等。仅仅看P值是否小于0.05是非常具有误导性的。准则4:合理的推断过程需要完整的报告和透明度。这条准则强调,在给出统计分析的结果时,不能有选择地给出P值和相关分析。举个例子来说,某项研究可能使用了好几种分析的方法。而研究者只报告P值最小的那项,这就会使得P值无法进行解释。相应地,声明建议研究者应该给出研究过程中检验过的假设的数量,所有使用过的方法和相应的P值等。准则5:P值或统计显著性并不衡量影响的大小或结果的重要性。这句话说明,统计的显著性并不代表科学上的重要性。一个经常会看到的现象是,无论某个效应的影响有多小,当样本量足够大或测量精度足够高时,P值通常都会很小。反之,一些重大的影响如果样本量不够多或测量精度不够高,其P值也可能很大。准则6:P值就其本身而言,并不是一个非常好的对模型或假设所含证据大小的衡量。简而言之,数据分析不能仅仅计算P值,而应该探索其他更贴近数据的模型。声明之后还列举出了一些其他的能对P值进行补充的分析方手段,比如置信区间,贝叶斯方法,似然比,FDR(False Discovery Rate)等等。这些方法都依赖于一些其他的假定,但在一些特定的问题中会比P值更为直接地回答诸如“哪个假定更为正确”这样的问题。声明最后给出了对统计实践者的一些建议:好的科学实践包括方方面面,如好的设计和实施,数值上和图形上对数据进行汇总,对研究中现象的理解,对结果的解释,完整的报告等等——科学的世界里,不存在哪个单一的指标能替代科学的思维方式。参考资料来源:搜狗百科-P值统计学意义(p值)ZT 结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。 在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤0.05被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果0.05≥p>0.01被认为是具有统计学意义,而0.01≥p≥0.001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。 所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。P值的计算公式是 =2[1-Φ(z0)] 当被测假设H1为 p不等于p0时; =1-Φ(z0) 当被测假设H1为 p大于p0时; =Φ(z0) 当被测假设H1为 p小于p0时; 其中,Φ(z0)要查表得到。 z0=(x-n*p0)/(根号下(np0(1-p0))) 最后,当P值小于某个显著参数的时候(常用0.05,标记为α,给你出题那个人,可能混淆了这两个概念)我们就可以否定假设。反之,则不能否定假设。 注意,这里p0是那个缺少的假设满意度,而不是要求的P值。 没有p0就形不成假设检验,也就不存在P值统计学意义(p值)ZT 结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。p值就是概率值,一般的统计问题可在excel中的工具 / 数据分析中计算
文章TAG:
算p值需要哪些数据库 用spss170如何计算两组数据的P值