1,ORM型的数据库有哪些

现在常用的这些数据库都是ORM的,ORACLE SQLSERVER DB2 ACCESS MYSQL……

ORM型的数据库有哪些

2,keyvalue 数据库 有哪些

key-value数据库是一个高性能的内存对象缓存系统,用于动态Web应用以减轻数据库负载,不存在关系型数据库。它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高动态、数据库驱动网站的速度。

keyvalue 数据库 有哪些

3,有哪些已存在的三维模型数据库

分为“主要文件,次要文件,事物日志文件”,其中“主要文件和事物日志文件”是必须存在的。
现在信息发展较快,人们对数据的要求也逐渐增强,之前二维的地图不能满足工作等方面的需求,建立三维建筑物数据库作为数字城市或者数字地球的一部分,建立城市直观印象,对路径查询、导航均由非常重要的意义。国内已经上线的三维城市地图,如e都市(2.5维)希望能帮到你

有哪些已存在的三维模型数据库

4,除了mnist手写字体数据库有哪些

1 cifar10数据库  60000张32*32 彩色图片 共10类  50000张训练  10000张测试  下载cifar10数据库   这是binary格式的,所以我们要把它转换成leveldb格式。  2 在../caffe-windows/examples/cifar10文件夹中有一个 convert_cifar_data.cpp  将他include到MainCaller.cpp中。如下:  编译....我是一次就通过了 ,在bin文件夹里出现convert_cifar_data.exe。然后 就可以进行格式转换。binary→leveldb  可以在bin文件夹下新建一个input文件夹。将cifar10.binary文件放在input文件夹中,这样转换时就不用写路径了。  cmd进入bin文件夹  执行后,在output文件夹下有cifar_train_leveldb和cifar_test_leveldb两个文件夹。里面是转化好的leveldb格式数据。  当然,也可以写一个bat文件处理,方便以后再次使用。  3 下面我们要求数据图像的均值  编译../../tools/comput_image_mean.cpp  编译成功后。接下来求mean  cmd进入bin。  执行后,在bin文件夹下出现一个mean.binaryproto文件,这就是所需的均值文件。  4 训练cifar网络  在.../examples/cifar10文件夹里已经有网络的配置文件,我们只需要将cifar_train_leveldb和cifar_test_leveldb两个文件夹还有mean.binaryproto文件拷到cifar0文件夹下。  修改cifar10_quick_train.prototxt中的source: "cifar-train-leveldb" mean_file: "mean.binaryproto" 和cifar10_quick_test.prototxt中的source: "cifar-test-leveldb"  mean_file: "mean.binaryproto"就可以了,  后面再训练就类似于MNIST的训练。写一个train_quick.bat,内容如下:  [plain] view plaincopy  copy ..\\..\\bin\\MainCaller.exe ..\\..\\bin\\train_net.exe  SET GLOG_logtostderr=1  "../../bin/train_net.exe" cifar10_quick_solver.prototxt  pause
任务占坑

5,nosql数据库有哪些

NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,是一项全新的数据库革命性运动,早期就有人提出,发展至2009年趋势越发高涨。NoSQL的拥护者们提倡运用非关系型的数据存储,相对于铺天盖地的关系型数据库运用,这一概念无疑是一种全新的思维的注入。 随着大数据的不断发展,非关系型的数据库现在成了一个极其热门的新领域,非关系数据库产品的发展非常迅速。现今的计算机体系结构在数据存储方面要有庞大的水平扩展性,而NoSQL也正是致力于改变这一现状。目前Google的 BigTable和Amazon 的Dynamo使用的就是NoSQL型数据库,本文介绍了10种出色的NoSQL数据库。 虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的e799bee5baa6e997aee7ad94e58685e5aeb931333337386632成熟、稳定。不过现在也面临着一个严酷的事实:技术越来越成熟——以至于原来很好的NoSQL数据存储不得不进行重写,也有少数人认为这就是所谓的2.0版本。这里列出一些比较知名的NoSQL工具,可以为大数据建立快速、可扩展的存储库。给一个地址吧http://www.caecp.cn/News/News-850.html
nosql太火,冒出太多产品了,保守估计也成百上千了。互联网公司常用的基本集中在以下几种,每种只举一个比较常见或者应用比较成功的例子吧。1. in-memory kv store : redisin memory key-value store,同时提供了更加丰富的数据结构和运算的能力,成功用法是替代memcached,通过checkpoint和commit log提供了快速的宕机恢复,同时支持replication提供读可扩展和高可用。2. disk-based kv store: leveldb真正基于磁盘的key-value storage, 模型单一简单,数据量不受限于内存大小,数据落盘高可靠,google的几位大神出品的精品,lsm模型天然写优化,顺序写盘的方式对于新硬件ssd再适合不过了,不足是仅提供了一个库,需要自己封装server端。3. document store: mongodb分布式nosql,具备了区别mysql的最大亮点:可扩展性。mongodb 最新引人的莫过于提供了sql接口,是目前nosql里最像mysql的,只是没有acid的特性,发展很快,支持了索引等特性,上手容易,对于数据量远超内存限制的场景来说,还需要慎重。4. column table store: hbase这个富二代似乎不用赘述了,最大的优势是开源,对于普通的scan和基于行的get等基本查询,性能完全不是问题,只是只提供裸的api,易用性上是短板,可扩展性方面是最强的,其次坐上了hadoop的快车,社区发展很快,各种基于其上的开源产品不少,来解决诸如join、聚集运算等复杂查询。

文章TAG:BIM的数据库有哪些  ORM型的数据库有哪些  
下一篇