1,oracle方案是什么

方案 schema 这个概念曾纠结了很久和对象的概念是不同 方案是该用户下所有对象的集合默认情况下方案名就是用户名
某用户拥有的所有的数据库对象的逻辑集合,就叫方案;方案在名称上和用户名是相同的。  比如有一个Oracle“用户”叫scott,那么一般称Scott用户所拥有的所有数据库对象的集合叫“方案”,Oracle中创建方案的方法就是创建用户。Oracle中如何实现方案:1、(可选)创建表空间2、创建用户3、给用户授予合适的权限4、创建数据库对象(表、视图、索引等)5、创建数据库应用程序(PL/SQL编程)
oracle数据库管理与性能调优组合研修班培训目标通过本课程的学习,使学员了解oracle数据库的存储结构、管理oracle例程、创建并管理oracle用户、备份及恢复数据库、监控数据库并解决使用数据库时出现的问题、配置oracle net service、使用rman创建和管理备份集和映像副本等。掌握数据库调优的思路和技巧、掌握多种优化工具的使用和优化方法、能够进行性能故障分析、掌握常见优化算法能根据应用需求选择。

oracle方案是什么

2,现在常用的mysql集群常用方案有哪些

首先你要考虑主从保证mysql down几时候可以贴换从数据库至於集群,你要考虑是否有那麼多mv访问到数据库,就算有,你也应该考虑的是用nosql而不一定用到集群!
但似乎很多人推荐这个)drbd+heartbeat+mysql(有一台机器空余?heartbeat切换时间较长?有脑裂问题?)mysql proxy(不够成熟与稳定?使用了lua?是不是用了他做分表则可以不用更改客户端逻辑?)mysql cluster (社区版不支持innodb引擎?商用案例不足?稳定性欠佳?或者还有其他问题?又或者听说现在发展不错?)mysql + mha (如果配上异步复制,似乎是不错的选择,又和问题?)mysql + mmm (似乎反映有很多问题,未实践过,谁能给个说法)淘宝的cola(似乎现在停止开发了?)?变形虫amoeba(事务支持?)或者,其他方案? 不管哪种方案都是有其场景限制 或说 规模限制,以及优缺点的。1. 首先反对大家做读写分离,关于这方面的原因解释太多次数(增加技术复杂度、可能导致读到落后的数据等),只说一点:99.8%的业务场景没有必要做读写分离,只要做好数据库设计优化 和配置合适正确的主机即可。2.keepalived+mysql --确实有脑裂的问题,还无法做到准确判断mysqld是否hang的情况;3.drbd+heartbeat+mysql --同样有脑裂的问题,还无法做到准确判断mysqld是否hang的情况,且drdb是不需要的,增加反而会出问题;3.mysql proxy -- 不错的项目,可惜官方半途夭折了,不建议用,无法高可用,是一个写分离;4.mysql cluster -- 社区版本不支持ndb是错误的言论,商用案例确实不多,主要是跟其业务场景要求有关系、这几年发展有点乱不过现在已经上正规了、对网络要求高;5.mysql + mha -- 可以解决脑裂的问题,需要的ip多,小集群是可以的,但是管理大的就麻烦,其次mysql + mmm 的话且坑很多,有mha就没必要采用mmm建议:1.若是双主复制的模式,不用做数据拆分,那么就可以选择mha或 keepalive 或 heartbeat2.若是双主复制,还做了数据的拆分,则可以考虑采用cobar;

现在常用的mysql集群常用方案有哪些

3,目前主流的分布式数据库系统实现方案有哪些

(1)方案一(数据库保存所有服务器索引信息) 全对称结构,没有中央服务器 web方案: 只从本地数据库检索符合条件的记录,给出结果 每次检索都要从本地服务器的海量数据中进行 数据库方案: 数据库保存所有服务器的索引内容 缓存命中率高的记录,减少检索时间 服务器负载分析: 服务器负载假设: 一百个结点,每结点一百人同时使用,每个结点一万条记录 web服务器:同时一百线程在本地数据库服务器检索 数据库服务器:每次接收一百个查询请求;每个请求要从一百万条索引中检索(最坏的情况);缓冲机制可以稍微减轻负担 数据更新操作: 同时更新所有数据库/只更新本地,服务器间相互同步 方案二(数据库保存本地索引及少量缓冲) 每高校作为一个结点 所有结点全对称结构,网络中没有一个中央服务器 web方案: 接收到请求时同时多线程向其它服务器同时搜索(服务器压力问题?) 数据库方案: 数据库保存本地数据 数据库保存一定量缓冲数据, 服务器负载分析: 服务器负载假设: 一百个结点,每结点一百人同时使用 则每个web服务器同时发起一万个线程向其它数据服务器搜索(oops!) 每个数据库服务器会同时接收到一万个查询请求(oops!) 采用学习过程只能少量减少查询请求和web服务器搜索线程 数据更新操作: 只更新本地 方案三(中央服务器方案一) 每高校一个结点 每结点结构相同,连接到同一个中央服务器 web方案 每个查询向中央服务器进行,由中央服务器实行检索,中央服务器返回检索结果 数据库方案 中央数据库保存所有索引信息 每结点可以只用小型数据库保存本地用户和其它信息即可 服务器负载分析: 服务器负载假设: 一百个结点,每结点一百人同时使用,每结点资料记录一万条 web服务器:同时发起一百个进程向中央数据库查询 数据库服务器(中央):同时接收一万条查询请求并返回大容量结果 数据库服务器(结点):少量工作 数据更新操作: 只更新中央服务器 方案四(中央服务器方案二) 每高校一个结点 每结点结构相同,连接到同一中央服务器 web方案: 每个查询向中央服务器进行,由中央服务器根据查询内容进行转发到结点数据库,再由结点数据库返回结果 数据库方案: 中央服务器保存各结点分类信息,根据页面请求的分类转发查询到相应服务器 服务器负载分析: 服务器负载假设: 一百个结点,每结点一百人同时使用,每结点资料记录一万条,每结点一百个类别 web服务器:同时一百个进程向中央数据库查询 数据库服务器(中央):同时接收一万条请求并转发 数据库服务器(结点):从中央服务器接收查询请求,最坏情况下每结点接收到一万条查询请求 数据更新操作: 只更新本地服务器 分类变化时更新中央服务器

目前主流的分布式数据库系统实现方案有哪些

4,数据仓库的实现策略

数据仓库的开发策略主要有自顶向下、自底向上和这两种策略的联合使用。自顶向下策略在实际应用中比较困难,因为数据仓库的功能是一种决策支持功能。这种功能在企业战略的应用范围中常常是很难确定的,因为数据仓库的应用机会往往超出企业当前的实际业务范围,而且在开发前就确定目标,会在实现预定目标后就不再追求新的应用,是数据仓库丧失更有战略意义的应用。由于该策略在开发前就可以给出数据仓库的实现范围,能够清楚地向决策者和企业描述系统的收益情况和实现目标,因此是一种有效的数据仓库开发策略。该方法使用时需要开发人员具有丰富的自顶向下开发系统的经验,企业决策层和管理人员完全知道数据仓库的预定目标并且了解数据仓库能够在那些决策中发挥作用。自底向上策略一般从某个数据仓库原型开始,选择一些特定的为企业管理人员所熟知的管理问题作为数据仓库开发的对象,在此基础上进行数据仓库的开发。因此,该策略常常用于一个数据集市、一个经理系统或一个部门的数据仓库开发。该策略的优点在于企业能够以较小的投入,获得较高的数据仓库应用收益。在开发过程中,人员投入较少,也容易获得成效。当然,如果某个项目的开发失败可能造成企业整个数据仓库系统开发的延迟。该策略一般用于企业洗碗对数据仓库的技术进行评价,以确定该技术的应用方式、地点和时间,或希望了解实现和运行数据仓库所需要的各种费用,或在数据仓库的应用目标并不是很明确时,数据仓库对决策过程影响不是很明确时使用。在自顶向下的开发策略中可以采用结构化或面向对象的方法,按照数据仓库的规划、需求确定、系统分析、系统设计、系统集成、系统测试和系统试运行的阶段完成数据仓库的开发。而在自底向上的开发中,则可以采用螺旋式的原型开发方法,使用户可以根据新的需求对试运行的系统进行修改。螺旋式的原型开发方法要求在较短的时间内快速的生成可以不断增加功能的数据仓库系统,这种开发方法主要适合于这样一些场合:在企业的市场动向和需求无法预测,市场的时机是实现产品的重要组成部分,不断地改进对与企业的市场调节是必需的;持久的竞争优势来自连续不断地改进,系统地改进是基于用户在使用中的不断发现。自顶向下和自底向上策略的联合使用具有两种策略的优点,既能快速的完成数据仓库的开发与应用,还可建立具有长远价值的数据仓库方案。但在实践中往往难以操作,通常需要能够建立、应用和维护企业模型、数据模型和技术结构的、具有丰富经验的开发人员,能够熟练的从具体(如业务系统中的元数据)转移到抽象(只基于业务性质而不是基于实现系统技术的逻辑模型);企业需要拥有由最终用户和信息系统人员组成的有经验的开发小组,能够清楚地指出数据仓库在企业战略决策支持中的应用。
目前,大家公认的数据仓库创始人w h.inmon在他所著的《建立数据仓库》一书中对数据仓库所下的定义;数据仓库就是面向主题的、集成的、稳定的、不同时间的数据集合,用以支持经营管理中的决策制定过程。数据仓库中的数据面向主题与传统的数据库面向应用相对应。主题是一个在较高层次将数据归类的标准,每一个主题对应一个宏观的分析领域。数据仓库的集成特性是指在数据进入数据仓库之前,必须进行数据加丁一和集成,这是建立数据仓库的关键步骤,首先要统一原始数据中的矛盾之处,还要将原始数据结构做一个从面向应用向面向主题的转变,数据仓库的稳定性是指数据仓库反映的是历史数据的内容,而不是日常事务处理产生的数据,数据经加工和集成进入数据仓库后是很少修改或根本不修改的;数据仓库是不同时间的数据集合,它要求数据仓库中的数据保存时限能满足进行决策分析的需要,而且数据仓库中的数据都要标明该数据的历史时期。 数据仓库最根本的特点是物理地存放数据,而且这些数据并不是最新的、专有的,而是来源于其他数据库,它要建立在一个较全面和完善的信息应用的基础上,用于支持高层决策分析,而事务处理数据库在企业的信息环境!!,承担的是日常操作性的任务,数据仓库是数据库技术的一种新的应用,到目前为止,数据仓库还是用数据库管理系统来管理其中的数据。

5,怎样设计一个好的数据库

数据库设计(Database Design)是指对于一个给定的应用环境,构造最优的数据库模式,建立数据库及其应用系统,使之能够有效地存储数据,满足各种用户的应用需求(信息要求和处理要求)。在数据库领域内,常常把使用数据库的各类系统统称为数据库应用系统。一、数据库和信息系统(1)数据库是信息系统的核心和基础,把信息系统中大量的数据按一定的模型组织起来,提供存储、维护、检索数据的功能,使信息系统可以方便、及时、准确地从数据库中获得所需的信息。(2)数据库是信息系统的各个部分能否紧密地结合在一起以及如何结合的关键所在。(3)数据库设计是信息系统开发和建设的重要组成部分。(4)数据库设计人员应该具备的技术和知识:数据库的基本知识和数据库设计技术计算机科学的基础知识和程序设计的方法和技巧软件工程的原理和方法应用领域的知识二、数据库设计的特点 数据库建设是硬件、软件和干件的结合三分技术,七分管理,十二分基础数据技术与管理的界面称之为“干件”数据库设计应该与应用系统设计相结合结构(数据)设计:设计数据库框架或数据库结构行为(处理)设计:设计应用程序、事务处理等结构和行为分离的设计传统的软件工程忽视对应用中数据语义的分析和抽象,只要有可能就尽量推迟数据结构设计的决策早期的数据库设计致力于数据模型和建模方法研究,忽视了对行为的设计如图:三、数据库设计方法简述 手工试凑法设计质量与设计人员的经验和水平有直接关系缺乏科学理论和工程方法的支持,工程的质量难以保证数据库运行一段时间后常常又不同程度地发现各种问题,增加了维护代价规范设计法手工设计方基本思想过程迭代和逐步求精规范设计法(续)典型方法:(1)新奥尔良(New Orleans)方法:将数据库设计分为四个阶段S.B.Yao方法:将数据库设计分为五个步骤I.R.Palmer方法:把数据库设计当成一步接一步的过程(2)计算机辅助设计ORACLE Designer 2000SYBASE PowerDesigner四、数据库设计的基本步骤数据库设计的过程(六个阶段) 1.需求分析阶段准确了解与分析用户需求(包括数据与处理)是整个设计过程的基础,是最困难、最耗费时间的一步2.概念结构设计阶段是整个数据库设计的关键通过对用户需求进行综合、归纳与抽象,形成一个独立于具体DBMS的概念模型3.逻辑结构设计阶段将概念结构转换为某个DBMS所支持的数据模型对其进行优化4.数据库物理设计阶段为逻辑数据模型选取一个最适合应用环境的物理结构(包括存储结构和存取方法)5.数据库实施阶段运用DBMS提供的数据语言、工具及宿主语言,根据逻辑设计和物理设计的结果建立数据库,编制与调试应用程序,组织数据入库,并进行试运行6.数据库运行和维护阶段数据库应用系统经过试运行后即可投入正式运行。在数据库系统运行过程中必须不断地对其进行评价、调整与修改设计特点:在设计过程中把数据库的设计和对数据库中数据处理的设计紧密结合起来将这两个方面的需求分析、抽象、设计、实现在各个阶段同时进行,相互参照,相互补充,以完善两方面的设计设计过程各个阶段的设计描述:如图:五、数据库各级模式的形成过程1.需求分析阶段:综合各个用户的应用需求2.概念设计阶段:形成独立于机器特点,独立于各个DBMS产品的概念模式(E-R图)3.逻辑设计阶段:首先将E-R图转换成具体的数据库产品支持的数据模型,如关系模型,形成数据库逻辑模式;然后根据用户处理的要求、安全性的考虑,在基本表的基础上再建立必要的视图(View),形成数据的外模式4.物理设计阶段:根据DBMS特点和处理的需要,进行物理存储安排,建立索引,形成数据库内模式 六、数据库设计技巧1. 设计数据库之前(需求分析阶段)1) 理解客户需求,询问用户如何看待未来需求变化。让客户解释其需求,而且随着开发的继续,还要经常询问客户保证其需求仍然在开发的目的之中。2) 了解企业业务可以在以后的开发阶段节约大量的时间。3) 重视输入输出。在定义数据库表和字段需求(输入)时,首先应检查现有的或者已经设计出的报表、查询和视图(输出)以决定为了支持这些输出哪些是必要的表和字段。举例:假如客户需要一个报表按照邮政编码排序、分段和求和,你要保证其中包括了单独的邮政编码字段而不要把邮政编码糅进地址字段里。4) 创建数据字典和ER 图表ER 图表和数据字典可以让任何了解数据库的人都明确如何从数据库中获得数据。ER图对表明表之间关系很有用,而数据字典则说明了每个字段的用途以及任何可能存在的别名。对SQL 表达式的文档化来说这是完全必要的。5) 定义标准的对象命名规范数据库各种对象的命名必须规范。2. 表和字段的设计(数据库逻辑设计)表设计原则1) 标准化和规范化数据的标准化有助于消除数据库中的数据冗余。标准化有好几种形式,但Third Normal Form(3NF)通常被认为在性能、扩展性和数据完整性方面达到了最好平衡。简单来说,遵守3NF 标准的数据库的表设计原则是:“One Fact in One Place”即某个表只包括其本身基本的属性,当不是它们本身所具有的属性时需进行分解。表之间的关系通过外键相连接。它具有以下特点:有一组表专门存放通过键连接起来的关联数据。举例:某个存放客户及其有关定单的3NF 数据库就可能有两个表:Customer 和Order。Order 表不包含定单关联客户的任何信息,但表内会存放一个键值,该键指向Customer 表里包含该客户信息的那一行。事实上,为了效率的缘故,对表不进行标准化有时也是必要的。2) 数据驱动采用数据驱动而非硬编码的方式,许多策略变更和维护都会方便得多,大大增强系统的灵活性和扩展性。举例,假如用户界面要访问外部数据源(文件、XML 文档、其他数据库等),不妨把相应的连接和路径信息存储在用户界面支持表里。还有,如果用户界面执行工作流之类的任务(发送邮件、打印信笺、修改记录状态等),那么产生工作流的数据也可以存放在数据库里。角色权限管理也可以通过数据驱动来完成。事实上,如果过程是数据驱动的,你就可以把相当大的责任推给用户,由用户来维护自己的工作流过程。3) 考虑各种变化在设计数据库的时候考虑到哪些数据字段将来可能会发生变更。举例,姓氏就是如此(注意是西方人的姓氏,比如女性结婚后从夫姓等)。所以,在建立系统存储客户信息时,在单独的一个数据表里存储姓氏字段,而且还附加起始日和终止日等字段,这样就可以跟踪这一数据条目的变化。字段设计原则4) 每个表中都应该添加的3 个有用的字段dRecordCreationDate,在VB 下默认是Now(),而在SQL Server ? 下默认为GETDATE()sRecordCreator,在SQL Server 下默认为NOT NULL DEFAULT ? USERnRecordVersion,记录的版本标记;有助于准确说明记录中出现null 数据或者丢失数据的原因 ?5) 对地址和电话采用多个字段描述街道地址就短短一行记录是不够的。Address_Line1、Address_Line2 和Address_Line3 可以提供更大的灵活性。还有,电话号码和邮件地址最好拥有自己的数据表,其间具有自身的类型和标记类别。6) 使用角色实体定义属于某类别的列在需要对属于特定类别或者具有特定角色的事物做定义时,可以用角色实体来创建特定的时间关联关系,从而可以实现自我文档化。举例:用PERSON 实体和PERSON_TYPE 实体来描述人员。比方说,当John Smith, Engineer 提升为John Smith, Director 乃至最后爬到John Smith, CIO 的高位,而所有你要做的不过是改变两个表PERSON 和PERSON_TYPE 之间关系的键值,同时增加一个日期/时间字段来知道变化是何时发生的。这样,你的PERSON_TYPE 表就包含了所有PERSON 的可能类型,比如Associate、Engineer、Director、CIO 或者CEO 等。还有个替代办法就是改变PERSON 记录来反映新头衔的变化,不过这样一来在时间上无法跟踪个人所处位置的具体时间。7) 选择数字类型和文本类型尽量充足在SQL 中使用smallint 和tinyint 类型要特别小心。比如,假如想看看月销售总额,总额字段类型是smallint,那么,如果总额超过了$32,767 就不能进行计算操作了。而ID 类型的文本字段,比如客户ID 或定单号等等都应该设置得比一般想象更大。假设客户ID 为10 位数长。那你应该把数据库表字段的长度设为12 或者13 个字符长。但这额外占据的空间却无需将来重构整个数据库就可以实现数据库规模的增长了。8) 增加删除标记字段在表中包含一个“删除标记”字段,这样就可以把行标记为删除。在关系数据库里不要单独删除某一行;最好采用清除数据程序而且要仔细维护索引整体性。 3. 选择键和索引(数据库逻辑设计)键选择原则:1) 键设计4 原则为关联字段创建外键。 ?所有的键都必须唯一。 ?避免使用复合键。 ?外键总是关联唯一的键字段。 ?2) 使用系统生成的主键设计数据库的时候采用系统生成的键作为主键,那么实际控制了数据库的索引完整性。这样,数据库和非人工机制就有效地控制了对存储数据中每一行的访问。采用系统生成键作为主键还有一个优点:当拥有一致的键结构时,找到逻辑缺陷很容易。3) 不要用用户的键(不让主键具有可更新性)在确定采用什么字段作为表的键的时候,可一定要小心用户将要编辑的字段。通常的情况下不要选择用户可编辑的字段作为键。4) 可选键有时可做主键把可选键进一步用做主键,可以拥有建立强大索引的能力。索引使用原则:索引是从数据库中获取数据的最高效方式之一。95%的数据库性能问题都可以采用索引技术得到解决。1) 逻辑主键使用唯一的成组索引,对系统键(作为存储过程)采用唯一的非成组索引,对任何外键列采用非成组索引。考虑数据库的空间有多大,表如何进行访问,还有这些访问是否主要用作读写。2) 大多数数据库都索引自动创建的主键字段,但是可别忘了索引外键,它们也是经常使用的键,比如运行查询显示主表和所有关联表的某条记录就用得上。3) 不要索引memo/note 字段,不要索引大型字段(有很多字符),这样作会让索引占用太多的存储空间。4) 不要索引常用的小型表不要为小型数据表设置任何键,假如它们经常有插入和删除操作就更别这样作了。对这些插入和删除操作的索引维护可能比扫描表空间消耗更多的时间。4. 数据完整性设计(数据库逻辑设计)1) 完整性实现机制:实体完整性:主键参照完整性:父表中删除数据:级联删除;受限删除;置空值父表中插入数据:受限插入;递归插入父表中更新数据:级联更新;受限更新;置空值DBMS对参照完整性可以有两种方法实现:外键实现机制(约束规则)和触发器实现机制用户定义完整性:NOT NULL;CHECK;触发器2) 用约束而非商务规则强制数据完整性采用数据库系统实现数据的完整性。这不但包括通过标准化实现的完整性而且还包括数据的功能性。在写数据的时候还可以增加触发器来保证数据的正确性。不要依赖于商务层保证数据完整性;它不能保证表之间(外键)的完整性所以不能强加于其他完整性规则之上。3) 强制指示完整性在有害数据进入数据库之前将其剔除。激活数据库系统的指示完整性特性。这样可以保持数据的清洁而能迫使开发人员投入更多的时间处理错误条件。4) 使用查找控制数据完整性控制数据完整性的最佳方式就是限制用户的选择。只要有可能都应该提供给用户一个清晰的价值列表供其选择。这样将减少键入代码的错误和误解同时提供数据的一致性。某些公共数据特别适合查找:国家代码、状态代码等。5) 采用视图为了在数据库和应用程序代码之间提供另一层抽象,可以为应用程序建立专门的视图而不必非要应用程序直接访问数据表。这样做还等于在处理数据库变更时给你提供了更多的自由。5. 其他设计技巧1) 避免使用触发器触发器的功能通常可以用其他方式实现。在调试程序时触发器可能成为干扰。假如你确实需要采用触发器,你最好集中对它文档化。2) 使用常用英语(或者其他任何语言)而不要使用编码在创建下拉菜单、列表、报表时最好按照英语名排序。假如需要编码,可以在编码旁附上用户知道的英语。3) 保存常用信息让一个表专门存放一般数据库信息非常有用。在这个表里存放数据库当前版本、最近检查/修复(对Access)、关联设计文档的名称、客户等信息。这样可以实现一种简单机制跟踪数据库,当客户抱怨他们的数据库没有达到希望的要求而与你联系时,这样做对非客户机/服务器环境特别有用。4) 包含版本机制在数据库中引入版本控制机制来确定使用中的数据库的版本。时间一长,用户的需求总是会改变的。最终可能会要求修改数据库结构。把版本信息直接存放到数据库中更为方便。 5) 编制文档对所有的快捷方式、命名规范、限制和函数都要编制文档。采用给表、列、触发器等加注释的数据库工具。对开发、支持和跟踪修改非常有用。对数据库文档化,或者在数据库自身的内部或者单独建立文档。这样,当过了一年多时间后再回过头来做第2 个版本,犯错的机会将大大减少。6) 测试、测试、反复测试建立或者修订数据库之后,必须用用户新输入的数据测试数据字段。最重要的是,让用户进行测试并且同用户一道保证选择的数据类型满足商业要求。测试需要在把新数据库投入实际服务之前完成。7) 检查设计在开发期间检查数据库设计的常用技术是通过其所支持的应用程序原型检查数据库。换句话说,针对每一种最终表达数据的原型应用,保证你检查了数据模型并且查看如何取出数据。

文章TAG:数据  数据库  实施  实施方案  数据库实施方案有哪些  
下一篇